BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24077683)

  • 41. Generation of bioactive peptides during food processing.
    Toldrá F; Reig M; Aristoy MC; Mora L
    Food Chem; 2018 Nov; 267():395-404. PubMed ID: 29934183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The thioredoxin system in the dental caries pathogen Streptococcus mutans and the food-industry bacterium Streptococcus thermophilus.
    Marco S; Rullo R; Albino A; Masullo M; De Vendittis E; Amato M
    Biochimie; 2013 Nov; 95(11):2145-56. PubMed ID: 23954859
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of whey proteins in tradional Bulgarian yougurt.
    Ivanova I; Antonova-Nikolova S; Iliev I
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):585-8. PubMed ID: 15954659
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selection and properties of alpha-acetolactate decarboxylase-deficient spontaneous mutants of Streptococcus thermophilus.
    Monnet C; Corrieu G
    Food Microbiol; 2007 Sep; 24(6):601-6. PubMed ID: 17418311
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The naturally competent strain Streptococcus thermophilus LMD-9 as a new tool to anchor heterologous proteins on the cell surface.
    Lecomte X; Gagnaire V; Briard-Bion V; Jardin J; Lortal S; Dary A; Genay M
    Microb Cell Fact; 2014 Jun; 13():82. PubMed ID: 24902482
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review.
    Broadbent JR; McMahon DJ; Welker DL; Oberg CJ; Moineau S
    J Dairy Sci; 2003 Feb; 86(2):407-23. PubMed ID: 12647947
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The genomic basis of the Streptococcus thermophilus health-promoting properties.
    Roux E; Nicolas A; Valence F; Siekaniec G; Chuat V; Nicolas J; Le Loir Y; Guédon E
    BMC Genomics; 2022 Mar; 23(1):210. PubMed ID: 35291951
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part I: overview.
    Hayes M; Ross RP; Fitzgerald GF; Stanton C
    Biotechnol J; 2007 Apr; 2(4):426-34. PubMed ID: 17407210
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties.
    Meisel H; Bockelmann W
    Antonie Van Leeuwenhoek; 1999; 76(1-4):207-15. PubMed ID: 10532380
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Physiology of Streptococcus thermophilus during the late stage of milk fermentation with special regard to sulfur amino-acid metabolism.
    Herve-Jimenez L; Guillouard I; Guedon E; Gautier C; Boudebbouze S; Hols P; Monnet V; Rul F; Maguin E
    Proteomics; 2008 Oct; 8(20):4273-86. PubMed ID: 18814336
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of Fermentation with
    Helal A; Pierri S; Tagliazucchi D; Solieri L
    Microorganisms; 2023 Jul; 11(7):. PubMed ID: 37512914
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Presence of additional peptidases in Streptococcus thermophilus CNRZ 302 compared to Lactococcus lactis.
    Rul F; Monnet V
    J Appl Microbiol; 1997 Jun; 82(6):695-704. PubMed ID: 9202436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lactic Acid Bacteria as Cell Factories for the Generation of Bioactive Peptides.
    Brown L; Pingitore EV; Mozzi F; Saavedra L; Villegas JM; Hebert EM
    Protein Pept Lett; 2017; 24(2):146-155. PubMed ID: 27890004
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prevention of chronic gastritis by fermented milks made with exopolysaccharide-producing Streptococcus thermophilus strains.
    Rodríguez C; Medici M; Rodríguez AV; Mozzi F; Font de Valdez G
    J Dairy Sci; 2009 Jun; 92(6):2423-34. PubMed ID: 19447974
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional dairy products as a source of bioactive peptides and probiotics: current trends and future prospectives.
    Ali MA; Kamal MM; Rahman MH; Siddiqui MN; Haque MA; Saha KK; Rahman MA
    J Food Sci Technol; 2022 Apr; 59(4):1263-1279. PubMed ID: 35250052
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of Penicillium aurantiogriseum protease immobilization on magnetic nanoparticles for antioxidant peptides' obtainment.
    Duarte Neto JMW; Maciel JDC; Campos JF; Carvalho Junior LB; Marques DAV; Lima CA; Porto ALF
    Prep Biochem Biotechnol; 2017 Aug; 47(7):644-654. PubMed ID: 28278110
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of the Sortase A in the Release of Cell-Wall Proteinase PrtS in the Growth Medium of
    Awussi AA; Roux E; Humeau C; Hafeez Z; Maigret B; Chang OK; Lecomte X; Humbert G; Miclo L; Genay M; Perrin C; Dary-Mourot A
    Microorganisms; 2021 Nov; 9(11):. PubMed ID: 34835505
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protease and esterase activity of staphylococci.
    Casaburi A; Villani F; Toldrá F; Sanz Y
    Int J Food Microbiol; 2006 Dec; 112(3):223-9. PubMed ID: 16782222
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium.
    Vaningelgem F; Zamfir M; Adriany T; De Vuyst L
    J Appl Microbiol; 2004; 97(6):1257-73. PubMed ID: 15546417
    [TBL] [Abstract][Full Text] [Related]  

  • 60. κ-Casein as a source of short-chain bioactive peptides generated by
    Skrzypczak K; Gustaw W; Szwajgier D; Fornal E; Waśko A
    J Food Sci Technol; 2017 Oct; 54(11):3679-3688. PubMed ID: 29051663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.