These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 24077848)

  • 1. An empirical test of convergent evolution in rhodopsins.
    Mackin KA; Roy RA; Theobald DL
    Mol Biol Evol; 2014 Jan; 31(1):85-95. PubMed ID: 24077848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties.
    Sudo Y; Ihara K; Kobayashi S; Suzuki D; Irieda H; Kikukawa T; Kandori H; Homma M
    J Biol Chem; 2011 Feb; 286(8):5967-76. PubMed ID: 21135094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolutionary relationship between microbial rhodopsins and metazoan rhodopsins.
    Shen L; Chen C; Zheng H; Jin L
    ScientificWorldJournal; 2013; 2013():435651. PubMed ID: 23476135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions.
    Adamian L; Ouyang Z; Tseng YY; Liang J
    Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins.
    Devine EL; Oprian DD; Theobald DL
    Proc Natl Acad Sci U S A; 2013 Aug; 110(33):13351-5. PubMed ID: 23904486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics.
    Pushkarev A; Inoue K; Larom S; Flores-Uribe J; Singh M; Konno M; Tomida S; Ito S; Nakamura R; Tsunoda SP; Philosof A; Sharon I; Yutin N; Koonin EV; Kandori H; Béjà O
    Nature; 2018 Jun; 558(7711):595-599. PubMed ID: 29925949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates.
    Devine EL; Theobald DL; Oprian DD
    Biochemistry; 2016 Aug; 55(34):4864-70. PubMed ID: 27486845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein.
    Zhai Y; Heijne WH; Smith DW; Saier MH
    Biochim Biophys Acta; 2001 Apr; 1511(2):206-23. PubMed ID: 11286964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins.
    Tsukamoto H; Terakita A; Shichida Y
    J Biol Chem; 2010 Mar; 285(10):7351-7. PubMed ID: 20053991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halobacterial rhodopsins.
    Mukohata Y; Ihara K; Tamura T; Sugiyama Y
    J Biochem; 1999 Apr; 125(4):649-57. PubMed ID: 10101275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment.
    Bieszke JA; Spudich EN; Scott KL; Borkovich KA; Spudich JL
    Biochemistry; 1999 Oct; 38(43):14138-45. PubMed ID: 10571987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins.
    Bieszke JA; Braun EL; Bean LE; Kang S; Natvig DO; Borkovich KA
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):8034-9. PubMed ID: 10393943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chimeric microbial rhodopsins containing the third cytoplasmic loop of bovine rhodopsin.
    Nakatsuma A; Yamashita T; Sasaki K; Kawanabe A; Inoue K; Furutani Y; Shichida Y; Kandori H
    Biophys J; 2011 Apr; 100(8):1874-82. PubMed ID: 21504723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of rhodopsin ion pumps in haloarchaea.
    Sharma AK; Walsh DA; Bapteste E; Rodriguez-Valera F; Ford Doolittle W; Papke RT
    BMC Evol Biol; 2007 May; 7():79. PubMed ID: 17511874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The novel ion pump rhodopsins from Haloarcula form a family independent from both the bacteriorhodopsin and archaerhodopsin families/tribes.
    Tateno M; Ihara K; Mukohata Y
    Arch Biochem Biophys; 1994 Nov; 315(1):127-32. PubMed ID: 7979388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane.
    Davies A; Gowen BE; Krebs AM; Schertler GF; Saibil HR
    J Mol Biol; 2001 Nov; 314(3):455-63. PubMed ID: 11846559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergent evolution of animal and microbial rhodopsins.
    Kojima K; Sudo Y
    RSC Adv; 2023 Feb; 13(8):5367-5381. PubMed ID: 36793294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of specific hydrogen bonds of archaeal rhodopsins for the binding to the transducer protein.
    Sudo Y; Yamabi M; Kato S; Hasegawa C; Iwamoto M; Shimono K; Kamo N
    J Mol Biol; 2006 Apr; 357(4):1274-82. PubMed ID: 16483604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.