These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24078200)

  • 1. A physiological analysis of color vision in batoid elasmobranchs.
    Bedore CN; Loew ER; Frank TM; Hueter RE; McComb DM; Kajiura SM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Dec; 199(12):1129-41. PubMed ID: 24078200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual pigments, cone oil droplets, ocular media and predicted spectral sensitivity in the domestic turkey (Meleagris gallopavo).
    Hart NS; Partridge JC; Cuthill IC
    Vision Res; 1999 Oct; 39(20):3321-8. PubMed ID: 10615498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.).
    Hart NS; Partridge JC; Cuthill IC; Bennett AT
    J Comp Physiol A; 2000 Apr; 186(4):375-87. PubMed ID: 10798725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual ecology of the Australian lungfish (Neoceratodus forsteri).
    Hart NS; Bailes HJ; Vorobyev M; Marshall NJ; Collin SP
    BMC Ecol; 2008 Dec; 8():21. PubMed ID: 19091135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse.
    Jacobs GH; Williams GA; Fenwick JA
    Vision Res; 2004; 44(14):1615-22. PubMed ID: 15135998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual pigments, cone oil droplets and ocular media in four species of estrildid finch.
    Hart NS; Partridge JC; Bennett AT; Cuthill IC
    J Comp Physiol A; 2000; 186(7-8):681-94. PubMed ID: 11016784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter.
    Levenson DH; Ponganis PJ; Crognale MA; Deegan JF; Dizon A; Jacobs GH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Aug; 192(8):833-43. PubMed ID: 16572322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual cells and visual pigments of the river lamprey revisited.
    Govardovskii V; Rotov A; Astakhova L; Nikolaeva D; Firsov M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Jan; 206(1):71-84. PubMed ID: 31942647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sensitivity and spectral identity of the cones driving the b-wave of the rat electroretinogram.
    Akula JD; Lyubarsky AL; Naarendorp F
    Vis Neurosci; 2003; 20(2):109-17. PubMed ID: 12916733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet receptors and color vision: evolutionary implications and a dissonance of paradigms.
    Goldsmith TH
    Vision Res; 1994 Jun; 34(11):1479-87. PubMed ID: 8023460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vision in elasmobranchs and their relatives: 21st century advances.
    Lisney TJ; Theiss SM; Collin SP; Hart NS
    J Fish Biol; 2012 Apr; 80(5):2024-54. PubMed ID: 22497415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S cones: Evolution, retinal distribution, development, and spectral sensitivity.
    Hunt DM; Peichl L
    Vis Neurosci; 2014 Mar; 31(2):115-38. PubMed ID: 23895771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological measurements of spectral mechanisms in the retinas of two cervids: white-tailed deer (Odocoileus virginianus) and fallow deer (Dama dama).
    Jacobs GH; Deegan JF; Neitz J; Murphy BP; Miller KV; Marchinton RL
    J Comp Physiol A; 1994 May; 174(5):551-7. PubMed ID: 8006855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primate color vision: a comparative perspective.
    Jacobs GH
    Vis Neurosci; 2008; 25(5-6):619-33. PubMed ID: 18983718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch.
    Hart NS; Lisney TJ; Marshall NJ; Collin SP
    J Exp Biol; 2004 Dec; 207(Pt 26):4587-94. PubMed ID: 15579554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels.
    Ekesten B; Gouras P
    Vis Neurosci; 2005; 22(6):893-903. PubMed ID: 16469196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thermal contribution to photoactivation in A2 visual pigments studied by temperature effects on spectral properties.
    Ala-Laurila P; Albert RJ; Saarinen P; Koskelainen A; Donner K
    Vis Neurosci; 2003; 20(4):411-9. PubMed ID: 14658769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cone-based vision of rats for ultraviolet and visible lights.
    Jacobs GH; Fenwick JA; Williams GA
    J Exp Biol; 2001 Jul; 204(Pt 14):2439-46. PubMed ID: 11511659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis.
    Ellingson JM; Fleishman LJ; Loew ER
    J Comp Physiol A; 1995 Nov; 177(5):559-67. PubMed ID: 7473305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.