These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 24078264)
1. Modulation of ionotropic GABA receptors by 6-methoxyflavanone and 6-methoxyflavone. Hall BJ; Karim N; Chebib M; Johnston GA; Hanrahan JR Neurochem Res; 2014 Jun; 39(6):1068-78. PubMed ID: 24078264 [TBL] [Abstract][Full Text] [Related]
2. 6-Methylflavanone, a more efficacious positive allosteric modulator of gamma-aminobutyric acid (GABA) action at human recombinant alpha2beta2gamma2L than at alpha1beta2gamma2L and alpha1beta2 GABA(A) receptors expressed in Xenopus oocytes. Hall BJ; Chebib M; Hanrahan JR; Johnston GA Eur J Pharmacol; 2005 Apr; 512(2-3):97-104. PubMed ID: 15840393 [TBL] [Abstract][Full Text] [Related]
3. Flumazenil-independent positive modulation of gamma-aminobutyric acid action by 6-methylflavone at human recombinant alpha1beta2gamma2L and alpha1beta2 GABAA receptors. Hall BJ; Chebib M; Hanrahan JR; Johnston GA Eur J Pharmacol; 2004 Apr; 491(1):1-8. PubMed ID: 15102527 [TBL] [Abstract][Full Text] [Related]
4. Suramin is a novel competitive antagonist selective to α1β2γ2 GABA Luo H; Wood K; Shi FD; Gao F; Chang Y Neuropharmacology; 2018 Oct; 141():148-157. PubMed ID: 30172846 [TBL] [Abstract][Full Text] [Related]
5. Evidence for coassembly of mutant GABAC rho1 with GABAA gamma2S, glycine alpha1 and glycine alpha2 receptor subunits in vitro. Pan ZH; Zhang D; Zhang X; Lipton SA Eur J Neurosci; 2000 Sep; 12(9):3137-45. PubMed ID: 10998097 [TBL] [Abstract][Full Text] [Related]
6. Permeability and single channel conductance of human homomeric rho1 GABAC receptors. Wotring VE; Chang Y; Weiss DS J Physiol; 1999 Dec; 521 Pt 2(Pt 2):327-36. PubMed ID: 10581305 [TBL] [Abstract][Full Text] [Related]
7. Protons inhibit Cl- conductance by direct or allosteric interaction with the GABA-binding site in the rat recombinant alpha1beta2gamma2L and alpha1beta2 GABAA receptor. Wang MD; Rahman M; Zhu D Eur J Pharmacol; 2005 Dec; 528(1-3):1-6. PubMed ID: 16325175 [TBL] [Abstract][Full Text] [Related]
8. The Differential Effects of Resveratrol and trans-ε-Viniferin on the GABA-Induced Current in GABAA Receptor Subtypes Expressed in Xenopus Laevis Oocytes. Groundwater PW; Hamid K; Ng I; Tallapragada VJ; Hibbs DE; Hanrahan J J Pharm Pharm Sci; 2015; 18(4):328-38. PubMed ID: 26626239 [TBL] [Abstract][Full Text] [Related]
9. Pharmacological characterization of the excitatory 'Cys-loop' GABA receptor family in Caenorhabditis elegans. Nicholl GC; Jawad AK; Weymouth R; Zhang H; Beg AA Br J Pharmacol; 2017 May; 174(9):781-795. PubMed ID: 28146602 [TBL] [Abstract][Full Text] [Related]
10. Differential pharmacology of GABAA and GABAC receptors on rat retinal bipolar cells. Feigenspan A; Bormann J Eur J Pharmacol; 1994 Dec; 288(1):97-104. PubMed ID: 7535710 [TBL] [Abstract][Full Text] [Related]
11. Interaction of positive allosteric modulators with human and Drosophila recombinant GABA receptors expressed in Xenopus laevis oocytes. Belelli D; Callachan H; Hill-Venning C; Peters JA; Lambert JJ Br J Pharmacol; 1996 Jun; 118(3):563-76. PubMed ID: 8762079 [TBL] [Abstract][Full Text] [Related]
12. The dietary flavonoids apigenin and (-)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABA(A) receptors. Campbell EL; Chebib M; Johnston GA Biochem Pharmacol; 2004 Oct; 68(8):1631-8. PubMed ID: 15451406 [TBL] [Abstract][Full Text] [Related]
13. Functional characterization of the antiepileptic drug candidate, padsevonil, on GABA Niespodziany I; Ghisdal P; Mullier B; Wood M; Provins L; Kaminski RM; Wolff C Epilepsia; 2020 May; 61(5):914-923. PubMed ID: 32297665 [TBL] [Abstract][Full Text] [Related]
14. Agonist pharmacology of two Drosophila GABA receptor splice variants. Hosie AM; Sattelle DB Br J Pharmacol; 1996 Dec; 119(8):1577-85. PubMed ID: 8982504 [TBL] [Abstract][Full Text] [Related]
15. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors. Zhang J; Xue F; Chang Y Mol Pharmacol; 2008 Oct; 74(4):941-51. PubMed ID: 18599601 [TBL] [Abstract][Full Text] [Related]
16. trans-4-Amino-2-methylbut-2-enoic acid (2-MeTACA) and (+/-)-trans-2-aminomethylcyclopropanecarboxylic acid ((+/-)-TAMP) can differentiate rat rho3 from human rho1 and rho2 recombinant GABA(C) receptors. Vien J; Duke RK; Mewett KN; Johnston GA; Shingai R; Chebib M Br J Pharmacol; 2002 Feb; 135(4):883-90. PubMed ID: 11861315 [TBL] [Abstract][Full Text] [Related]
17. Positive allosteric modulation by ultraviolet irradiation on GABA(A), but not GABA(C), receptors expressed in Xenopus oocytes. Chang Y; Xie Y; Weiss DS J Physiol; 2001 Oct; 536(Pt 2):471-8. PubMed ID: 11600682 [TBL] [Abstract][Full Text] [Related]
18. 3-Hydroxy-2'-methoxy-6-methylflavone: a potent anxiolytic with a unique selectivity profile at GABA(A) receptor subtypes. Karim N; Gavande N; Wellendorph P; Johnston GA; Hanrahan JR; Chebib M Biochem Pharmacol; 2011 Dec; 82(12):1971-83. PubMed ID: 21924247 [TBL] [Abstract][Full Text] [Related]
19. Design and in vitro pharmacology of a selective gamma-aminobutyric acidC receptor antagonist. Ragozzino D; Woodward RM; Murata Y; Eusebi F; Overman LE; Miledi R Mol Pharmacol; 1996 Oct; 50(4):1024-30. PubMed ID: 8863850 [TBL] [Abstract][Full Text] [Related]
20. Modulation of recombinant GABA receptor/channel subunits by domain-specific antibodies in Xenopus oocytes. Ekema GM; Zheng W; Wang L; Lu L J Membr Biol; 2001 Oct; 183(3):205-13. PubMed ID: 11696862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]