These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. In situ TEM and SEM studies on the antimicrobial activity and prevention of Candida albicans biofilm by Cassia spectabilis extract. Sangetha S; Zuraini Z; Suryani S; Sasidharan S Micron; 2009 Jun; 40(4):439-43. PubMed ID: 19261482 [TBL] [Abstract][Full Text] [Related]
28. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. Lara HH; Romero-Urbina DG; Pierce C; Lopez-Ribot JL; Arellano-Jiménez MJ; Jose-Yacaman M J Nanobiotechnology; 2015 Dec; 13():91. PubMed ID: 26666378 [TBL] [Abstract][Full Text] [Related]
29. In vitro efficacies of caspofungin or micafungin catheter lock solutions on Candida albicans biofilm growth. Cateau E; Rodier MH; Imbert C J Antimicrob Chemother; 2008 Jul; 62(1):153-5. PubMed ID: 18407917 [TBL] [Abstract][Full Text] [Related]
30. Susceptibility of Candida biofilms to histatin 5 and fluconazole. Konopka K; Dorocka-Bobkowska B; Gebremedhin S; Düzgüneş N Antonie Van Leeuwenhoek; 2010 May; 97(4):413-7. PubMed ID: 20140514 [TBL] [Abstract][Full Text] [Related]
32. Anti-Candida albicans biofilm activity by Cassia spectabilis standardized methanol extract: an ultrastructural study. Torey A; Sasidharan S Eur Rev Med Pharmacol Sci; 2011 Aug; 15(8):875-82. PubMed ID: 21845797 [TBL] [Abstract][Full Text] [Related]
33. Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives. Shafreen RM; Muthamil S; Pandian SK Appl Microbiol Biotechnol; 2014 Aug; 98(15):6775-85. PubMed ID: 24723295 [TBL] [Abstract][Full Text] [Related]
34. Exploring the anti-biofilm activity of cinnamic acid derivatives in Candida albicans. De Vita D; Simonetti G; Pandolfi F; Costi R; Di Santo R; D'Auria FD; Scipione L Bioorg Med Chem Lett; 2016 Dec; 26(24):5931-5935. PubMed ID: 27838185 [TBL] [Abstract][Full Text] [Related]
35. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Raut JS; Shinde RB; Chauhan NM; Karuppayil SM Biofouling; 2013; 29(1):87-96. PubMed ID: 23216018 [TBL] [Abstract][Full Text] [Related]
36. Inhibitory effects of deoxynivalenol on pathogenesis of Candida albicans. Rajasekharan SK; Byun J; Lee J J Appl Microbiol; 2018 Nov; 125(5):1266-1275. PubMed ID: 29953693 [TBL] [Abstract][Full Text] [Related]
37. Sesquiterpenes from Carpesium macrocephalum inhibit Candida albicans biofilm formation and dimorphism. Xie C; Sun L; Meng L; Wang M; Xu J; Bartlam M; Guo Y Bioorg Med Chem Lett; 2015 Nov; 25(22):5409-11. PubMed ID: 26394911 [TBL] [Abstract][Full Text] [Related]
38. Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Pemmaraju SC; Pruthi PA; Prasad R; Pruthi V Indian J Exp Biol; 2013 Nov; 51(11):1032-7. PubMed ID: 24416942 [TBL] [Abstract][Full Text] [Related]
39. Photodynamic inactivation of planktonic cultures and biofilms of Candida albicans mediated by aluminum-chloride-phthalocyanine entrapped in nanoemulsions. Ribeiro AP; Andrade MC; da Silva Jde F; Jorge JH; Primo FL; Tedesco AC; Pavarina AC Photochem Photobiol; 2013; 89(1):111-9. PubMed ID: 22774873 [TBL] [Abstract][Full Text] [Related]