These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24078905)

  • 1. Uraemic toxins generated in the presence of fullerene C60, carbon-encapsulated magnetic nanoparticles, and multiwalled carbon nanotubes.
    Popławska M; Krawczyk H
    Biomed Res Int; 2013; 2013():168512. PubMed ID: 24078905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of uremic toxin methylguanidine from creatinine via creatol on activated carbon.
    Krawczyk H
    J Pharm Biomed Anal; 2009 May; 49(4):945-9. PubMed ID: 19286340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of methylguanidine from creatinine via creatol by active oxygen species: analyses of the catabolism in vitro.
    Nakamura K; Ienaga K; Yokozawa T; Fujitsuka N; Oura H
    Nephron; 1991; 58(1):42-6. PubMed ID: 1649975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatol (5-hydroxycreatinine), a new toxin candidate in uremic patients.
    Nakamura K; Ienaga K
    Experientia; 1990 May; 46(5):470-2. PubMed ID: 2347396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of methylguanidine production from creatinine and creatol in vivo.
    Yokozawa T; Fujitsuka N; Oura H; Ienaga K; Nakamura K
    Nephron; 1991; 58(1):125-6. PubMed ID: 1857475
    [No Abstract]   [Full Text] [Related]  

  • 6. Changes in serum levels of creatol and methylguanidine in renal injury induced by lipid peroxide produced by vitamin E deficiency and GSH depletion in rats.
    Ozasa H; Watanabe T; Nakamura K; Fukunaga Y; Ienaga K; Hagiwara K
    Nephron; 1997; 75(2):224-9. PubMed ID: 9041546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of renal effects of creatinine, creatol and methylguanidine in rats with adenine-induced chronic renal failure.
    Yokozawa T; Oura H; Ienaga K; Nakamura K
    Nephron; 1993; 64(3):424-8. PubMed ID: 8341388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of creatinine, creatol and methylguanidine on renal function.
    Yokozawa T; Oura H; Ienaga K; Nakamura K
    Nihon Jinzo Gakkai Shi; 1992 Sep; 34(9):973-7. PubMed ID: 1479734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying single-wall carbon nanotubes through encapsulation: from optical methods till magnetic resonance.
    Simon F
    J Nanosci Nanotechnol; 2007; 7(4-5):1197-220. PubMed ID: 17450887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Major role of hydroxyl radical in the conversion of creatinine to creatol.
    Fujitsuka N; Yokozawa T; Oura H; Nakamura K; Ienaga K
    Nephron; 1994; 68(2):280-1. PubMed ID: 7830877
    [No Abstract]   [Full Text] [Related]  

  • 11. Adsorption of Cu(II) on oxidized multi-walled carbon nanotubes in the presence of hydroxylated and carboxylated fullerenes.
    Wang J; Li Z; Li S; Qi W; Liu P; Liu F; Ye Y; Wu L; Wang L; Wu W
    PLoS One; 2013; 8(8):e72475. PubMed ID: 24009683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity studies of fullerenes and derivatives.
    Kolosnjaj J; Szwarc H; Moussa F
    Adv Exp Med Biol; 2007; 620():168-80. PubMed ID: 18217343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors.
    Turabekova M; Rasulev B; Theodore M; Jackman J; Leszczynska D; Leszczynski J
    Nanoscale; 2014 Apr; 6(7):3488-95. PubMed ID: 24548972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of creatol, a hydroxyl radical adduct of creatinine and its increase by puromycin aminonucleoside in isolated rat hepatocytes.
    Aoyagi K; Akiyama K; Kuzure Y; Takemura K; Nagase S; Ienaga K; Nakamura K; Koyama A; Narita M
    Free Radic Res; 1998 Sep; 29(3):221-6. PubMed ID: 9802553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(3-octylthiophene)/fullerene heterojunction solar cell incorporating carbon nanotubes.
    Kalita G; Adhikari S; Aryal HR; Wakita K; Umeno M
    J Nanosci Nanotechnol; 2010 Jun; 10(6):3844-8. PubMed ID: 20355377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fullerene-C60-MWCNT composite film based ultrasensitive electrochemical sensing platform for the trace analysis of pyruvic acid in biological fluids.
    Brahman PK; Pandey N; Topkaya SN; Singhai R
    Talanta; 2015 Mar; 134():554-559. PubMed ID: 25618707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creatol, an oxidative product of creatinine in hemodialysis patients.
    Tomida C; Aoyagi K; Nagase S; Gotoh M; Yamagata K; Takemura K; Koyama A
    Free Radic Res; 2000 Jan; 32(1):85-92. PubMed ID: 10625220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding high-yield catalyst-free growth of horizontally aligned single-walled carbon nanotubes nucleated by activated C60 species.
    Ibrahim I; Bachmatiuk A; Grimm D; Popov A; Makharza S; Knupfer M; Büchner B; Cuniberti G; Rümmeli MH
    ACS Nano; 2012 Dec; 6(12):10825-34. PubMed ID: 23186015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organometallic radical-adducts of fullerenes C60, C70, and single-walled carbon nanotubes derived from (cyclopentadienyl)molybdenumtricarbonyl dimer.
    Gasanov RG; Lobach AS; Sokolov VI; Demenjev AP; Maslakov KI; Obraztsova ED
    J Nanosci Nanotechnol; 2007; 7(4-5):1546-50. PubMed ID: 17450924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C
    Jamei HR; Rezaei B; Ensafi AA
    Bioelectrochemistry; 2021 Apr; 138():107701. PubMed ID: 33254052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.