These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24079466)

  • 1. Changes of gait kinematics in different simulators of reduced gravity.
    Sylos-Labini F; Ivanenko YP; Cappellini G; Portone A; MacLellan MJ; Lacquaniti F
    J Mot Behav; 2013; 45(6):495-505. PubMed ID: 24079466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait transitions in simulated reduced gravity.
    Ivanenko YP; Labini FS; Cappellini G; Macellari V; McIntyre J; Lacquaniti F
    J Appl Physiol (1985); 2011 Mar; 110(3):781-8. PubMed ID: 21212248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human muscle activity and lower limb biomechanics of overground walking at varying levels of simulated reduced gravity and gait speeds.
    MacLean MK; Ferris DP
    PLoS One; 2021; 16(7):e0253467. PubMed ID: 34260611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smooth changes in the EMG patterns during gait transitions under body weight unloading.
    Labini FS; Ivanenko YP; Cappellini G; Gravano S; Lacquaniti F
    J Neurophysiol; 2011 Sep; 106(3):1525-36. PubMed ID: 21697441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human locomotion under reduced gravity conditions: biomechanical and neurophysiological considerations.
    Sylos-Labini F; Lacquaniti F; Ivanenko YP
    Biomed Res Int; 2014; 2014():547242. PubMed ID: 25247179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing gravity takes the bounce out of running.
    Polet DT; Schroeder RT; Bertram JEA
    J Exp Biol; 2018 Feb; 221(Pt 3):. PubMed ID: 29217625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The preferred walk to run transition speed in actual lunar gravity.
    De Witt JK; Edwards WB; Scott-Pandorf MM; Norcross JR; Gernhardt ML
    J Exp Biol; 2014 Sep; 217(Pt 18):3200-3. PubMed ID: 25232195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity.
    Ivanenko YP; Grasso R; Macellari V; Lacquaniti F
    J Neurophysiol; 2002 Jun; 87(6):3070-89. PubMed ID: 12037209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective dynamic balance control during the swing phase of walking: stability boundaries and time-to-contact analysis.
    Remelius JG; Hamill J; van Emmerik RE
    Hum Mov Sci; 2014 Aug; 36():227-45. PubMed ID: 24856189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.
    Arazpour M; Chitsazan A; Bani MA; Rouhi G; Ghomshe FT; Hutchins SW
    Prosthet Orthot Int; 2013 Oct; 37(5):411-4. PubMed ID: 23327836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional kinematics and dynamics of the foot during walking: a model of central control mechanisms.
    Osaki Y; Kunin M; Cohen B; Raphan T
    Exp Brain Res; 2007 Jan; 176(3):476-96. PubMed ID: 16917770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skipping vs. running as the bipedal gait of choice in hypogravity.
    Pavei G; Biancardi CM; Minetti AE
    J Appl Physiol (1985); 2015 Jul; 119(1):93-100. PubMed ID: 25930029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematics and dynamics of burst transitions.
    Segers V; Van Caekenberghe I; De Clercq D; Aerts P
    J Mot Behav; 2014; 46(4):267-76. PubMed ID: 24773232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invariant aspects of human locomotion in different gravitational environments.
    Minetti AE
    Acta Astronaut; 2001; 49(3-10):191-8. PubMed ID: 11669109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative gait initiation kinematics between simulated unilateral and bilateral ankle hypomobility: Does bilateral constraint improve speed performance?
    Delafontaine A; Honeine JL; Do MC; Gagey O; Chong RK
    Neurosci Lett; 2015 Aug; 603():55-9. PubMed ID: 26197055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive quantitative investigation of arm swing during walking at various speed and surface slope conditions.
    Hejrati B; Chesebrough S; Bo Foreman K; Abbott JJ; Merryweather AS
    Hum Mov Sci; 2016 Oct; 49():104-15. PubMed ID: 27367784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The correlation between locomotor performance and hindlimb kinematics during burst locomotion in the Florida scrub lizard, Sceloporus woodi.
    McElroy EJ; Archambeau KL; McBrayer LD
    J Exp Biol; 2012 Feb; 215(Pt 3):442-53. PubMed ID: 22246253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy.
    Ackermann M; van den Bogert AJ
    J Biomech; 2012 Apr; 45(7):1293-8. PubMed ID: 22365845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor patterns in human walking and running.
    Cappellini G; Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Jun; 95(6):3426-37. PubMed ID: 16554517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-To-Contact Analysis of Gait Stability in the Swing Phase of Walking in People With Multiple Sclerosis.
    Remelius JG; van Emmerik RE
    Motor Control; 2015 Oct; 19(4):289-311. PubMed ID: 25674849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.