These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 24079546)
21. Acid-activatable prodrug nanogels for efficient intracellular doxorubicin release. Zhan F; Chen W; Wang Z; Lu W; Cheng R; Deng C; Meng F; Liu H; Zhong Z Biomacromolecules; 2011 Oct; 12(10):3612-20. PubMed ID: 21905663 [TBL] [Abstract][Full Text] [Related]
22. Doxorubicin and chloroquine coencapsulated liposomes: preparation and improved cytotoxicity on human breast cancer cells. Qiu L; Yao M; Gao M; Zhao Q J Liposome Res; 2012 Sep; 22(3):245-53. PubMed ID: 22607110 [TBL] [Abstract][Full Text] [Related]
23. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells. Shalviri A; Raval G; Prasad P; Chan C; Liu Q; Heerklotz H; Rauth AM; Wu XY Eur J Pharm Biopharm; 2012 Nov; 82(3):587-97. PubMed ID: 22995704 [TBL] [Abstract][Full Text] [Related]
24. Dual stimuli-responsive poly(N-isopropylacrylamide)-b-poly(L-histidine) chimeric materials for the controlled delivery of doxorubicin into liver carcinoma. Johnson RP; Jeong YI; John JV; Chung CW; Kang DH; Selvaraj M; Suh H; Kim I Biomacromolecules; 2013 May; 14(5):1434-43. PubMed ID: 23627834 [TBL] [Abstract][Full Text] [Related]
25. Encapsulation of an adamantane-doxorubicin prodrug in pH-responsive polysaccharide capsules for controlled release. Luo GF; Xu XD; Zhang J; Yang J; Gong YH; Lei Q; Jia HZ; Li C; Zhuo RX; Zhang XZ ACS Appl Mater Interfaces; 2012 Oct; 4(10):5317-24. PubMed ID: 23009157 [TBL] [Abstract][Full Text] [Related]
26. Highly uniform and stable cerasomal microcapsule with good biocompatibility for drug delivery. Zhang CY; Cao Z; Zhu WJ; Liu J; Jiang Q; Shuai XT Colloids Surf B Biointerfaces; 2014 Apr; 116():327-33. PubMed ID: 24503354 [TBL] [Abstract][Full Text] [Related]
27. Efficacious anticancer drug delivery mediated by a pH-sensitive self-assembly of a conserved tripeptide derived from tyrosine kinase NGF receptor. Moitra P; Kumar K; Kondaiah P; Bhattacharya S Angew Chem Int Ed Engl; 2014 Jan; 53(4):1113-7. PubMed ID: 24338837 [TBL] [Abstract][Full Text] [Related]
28. Constructing transferrin receptor targeted drug delivery system by using doxorubicin hydrochloride and vanadocene dichloride. Zhang Y; Xiang J; Liu Y; Zhang X; Tang Y Bioorg Med Chem Lett; 2011 Oct; 21(19):5982-6. PubMed ID: 21862329 [TBL] [Abstract][Full Text] [Related]
29. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. Sahoo B; Devi KS; Banerjee R; Maiti TK; Pramanik P; Dhara D ACS Appl Mater Interfaces; 2013 May; 5(9):3884-93. PubMed ID: 23551195 [TBL] [Abstract][Full Text] [Related]
30. Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Cui J; Yan Y; Such GK; Liang K; Ochs CJ; Postma A; Caruso F Biomacromolecules; 2012 Aug; 13(8):2225-8. PubMed ID: 22792863 [TBL] [Abstract][Full Text] [Related]
31. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Wen S; Liu H; Cai H; Shen M; Shi X Adv Healthc Mater; 2013 Sep; 2(9):1267-76. PubMed ID: 23447549 [TBL] [Abstract][Full Text] [Related]
32. Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy. Paliwal SR; Paliwal R; Pal HC; Saxena AK; Sharma PR; Gupta PN; Agrawal GP; Vyas SP Mol Pharm; 2012 Jan; 9(1):176-86. PubMed ID: 22091702 [TBL] [Abstract][Full Text] [Related]
33. Cancer-Targeted Controlled Delivery of Chemotherapeutic Anthracycline Derivatives Using Apoferritin Nanocage Carriers. Kurzątkowska K; Pazos MA; Herschkowitz JI; Hepel M Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33572999 [TBL] [Abstract][Full Text] [Related]
34. Polymer micelle with pH-triggered hydrophobic-hydrophilic transition and de-cross-linking process in the core and its application for targeted anticancer drug delivery. Fan J; Zeng F; Wu S; Wang X Biomacromolecules; 2012 Dec; 13(12):4126-37. PubMed ID: 23145920 [TBL] [Abstract][Full Text] [Related]
35. Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil. Wu J; Lu Y; Lee A; Pan X; Yang X; Zhao X; Lee RJ J Pharm Pharm Sci; 2007; 10(3):350-7. PubMed ID: 17727798 [TBL] [Abstract][Full Text] [Related]
36. Preparation and in Vitro Analysis of Human Serum Albumin Nanoparticles Loaded with Anthracycline Derivatives. Kimura K; Yamasaki K; Nakamura H; Haratake M; Taguchi K; Otagiri M Chem Pharm Bull (Tokyo); 2018; 66(4):382-390. PubMed ID: 29607904 [TBL] [Abstract][Full Text] [Related]
37. New pH-responsive gemini lipid derived co-liposomes for efficacious doxorubicin delivery to drug resistant cancer cells. Moitra P; Kumar K; Sarkar S; Kondaiah P; Duan W; Bhattacharya S Chem Commun (Camb); 2017 Jul; 53(58):8184-8187. PubMed ID: 28678285 [TBL] [Abstract][Full Text] [Related]
38. Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly(beta-amino ester) block copolymer micelles for cancer therapy. Ko J; Park K; Kim YS; Kim MS; Han JK; Kim K; Park RW; Kim IS; Song HK; Lee DS; Kwon IC J Control Release; 2007 Nov; 123(2):109-15. PubMed ID: 17894942 [TBL] [Abstract][Full Text] [Related]
39. pH and reduction dual-sensitive copolymeric micelles for intracellular doxorubicin delivery. Chen J; Qiu X; Ouyang J; Kong J; Zhong W; Xing MM Biomacromolecules; 2011 Oct; 12(10):3601-11. PubMed ID: 21853982 [TBL] [Abstract][Full Text] [Related]
40. Biological activity of water-soluble inclusion complexes of 1'-acetoxychavicol acetate with cyclodextrins. Azuma H; Aizawa Y; Higashitani N; Tsumori T; Kojima-Yuasa A; Matsui-Yuasa I; Nagasaki T Bioorg Med Chem; 2011 Jun; 19(12):3855-63. PubMed ID: 21596572 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]