BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24079967)

  • 1. Impact of ZnO embedded feed spacer on biofilm development in membrane systems.
    Ronen A; Semiat R; Dosoretz CG
    Water Res; 2013 Nov; 47(17):6628-38. PubMed ID: 24079967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
    Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient.
    Dreszer C; Flemming HC; Zwijnenburg A; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Mar; 50():200-11. PubMed ID: 24374131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of permeate drag force on the development of a biofouling layer in a pressure-driven membrane separation system.
    Eshed L; Yaron S; Dosoretz CG
    Appl Environ Microbiol; 2008 Dec; 74(23):7338-47. PubMed ID: 18931284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation.
    Wibisono Y; Yandi W; Golabi M; Nugraha R; Cornelissen ER; Kemperman AJ; Ederth T; Nijmeijer K
    Water Res; 2015 Mar; 71():171-86. PubMed ID: 25616114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems.
    Bereschenko LA; Prummel H; Euverink GJ; Stams AJ; van Loosdrecht MC
    Water Res; 2011 Jan; 45(2):405-16. PubMed ID: 21111441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity.
    Shrestha A; Shi Z; Neoh KG; Kishen A
    J Endod; 2010 Jun; 36(6):1030-5. PubMed ID: 20478460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal.
    Zodrow K; Brunet L; Mahendra S; Li D; Zhang A; Li Q; Alvarez PJ
    Water Res; 2009 Feb; 43(3):715-23. PubMed ID: 19046755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems.
    Siddiqui A; Farhat N; Bucs SS; Linares RV; Picioreanu C; Kruithof JC; van Loosdrecht MC; Kidwell J; Vrouwenvelder JS
    Water Res; 2016 Mar; 91():55-67. PubMed ID: 26773488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenic silver nanoparticles (bio-Ag 0) decrease biofouling of bio-Ag 0/PES nanocomposite membranes.
    Zhang M; Zhang K; De Gusseme B; Verstraete W
    Water Res; 2012 May; 46(7):2077-87. PubMed ID: 22330259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation.
    Ben-Sasson M; Lu X; Bar-Zeev E; Zodrow KR; Nejati S; Qi G; Giannelis EP; Elimelech M
    Water Res; 2014 Oct; 62():260-70. PubMed ID: 24963888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties.
    Mollahosseini A; Rahimpour A
    Biofouling; 2013; 29(5):537-48. PubMed ID: 23682668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm increases permeate quality by organic carbon degradation in low pressure ultrafiltration.
    Chomiak A; Traber J; Morgenroth E; Derlon N
    Water Res; 2015 Nov; 85():512-20. PubMed ID: 26386342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems.
    Vrouwenvelder JS; Buiter J; Riviere M; van der Meer WG; van Loosdrecht MC; Kruithof JC
    Water Res; 2010 Feb; 44(3):689-702. PubMed ID: 19836048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic Zinc Oxide Nanoparticles in Antibacterial Ultrafiltration Membranes for Biofouling Control.
    Vevers R; Kulkarni A; Seifert A; Pöschel K; Schlenstedt K; Meier-Haack J; Mezule L
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination.
    Yang HL; Lin JC; Huang C
    Water Res; 2009 Aug; 43(15):3777-86. PubMed ID: 19586651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined biofouling and scaling in membrane feed channels: a new modeling approach.
    Radu AI; Bergwerff L; van Loosdrecht MC; Picioreanu C
    Biofouling; 2015; 31(1):83-100. PubMed ID: 25587632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibiofilm activity of Bacillus pumilus SW9 against initial biofouling on microfiltration membranes.
    Zhang Y; Yu X; Gong S; Ye C; Fan Z; Lin H
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1309-20. PubMed ID: 23715854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change.
    Dreszer C; Wexler AD; Drusová S; Overdijk T; Zwijnenburg A; Flemming HC; Kruithof JC; Vrouwenvelder JS
    Water Res; 2014 Dec; 67():243-54. PubMed ID: 25282092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel scenario for biofouling control of spiral wound membrane systems.
    Vrouwenvelder JS; Van Loosdrecht MC; Kruithof JC
    Water Res; 2011 Jul; 45(13):3890-8. PubMed ID: 21592541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.