These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 24080013)
21. The gene encoding the T-box factor Tbx2 is a target for the microphthalmia-associated transcription factor in melanocytes. Carreira S; Liu B; Goding CR J Biol Chem; 2000 Jul; 275(29):21920-7. PubMed ID: 10770922 [TBL] [Abstract][Full Text] [Related]
22. The stepwise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to Bmp4, activin A, bFGF and VEGF. Pearson S; Sroczynska P; Lacaud G; Kouskoff V Development; 2008 Apr; 135(8):1525-35. PubMed ID: 18339678 [TBL] [Abstract][Full Text] [Related]
24. Stabilization of β-catenin promotes melanocyte specification at the expense of the Schwann cell lineage. Colombo S; Petit V; Wagner RY; Champeval D; Yajima I; Gesbert F; Aktary Z; Davidson I; Delmas V; Larue L Development; 2022 Jan; 149(2):. PubMed ID: 34878101 [TBL] [Abstract][Full Text] [Related]
25. Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Widlund HR; Fisher DE Oncogene; 2003 May; 22(20):3035-41. PubMed ID: 12789278 [TBL] [Abstract][Full Text] [Related]
26. Co-expression of SOX9 and SOX10 during melanocytic differentiation in vitro. Cook AL; Smith AG; Smit DJ; Leonard JH; Sturm RA Exp Cell Res; 2005 Aug; 308(1):222-35. PubMed ID: 15896776 [TBL] [Abstract][Full Text] [Related]
27. BMP10 as a potent inducer of trophoblast differentiation in human embryonic and induced pluripotent stem cells. Lichtner B; Knaus P; Lehrach H; Adjaye J Biomaterials; 2013 Dec; 34(38):9789-802. PubMed ID: 24070570 [TBL] [Abstract][Full Text] [Related]
28. Class III β-tubulin, a novel biomarker in the human melanocyte lineage. Locher H; de Rooij KE; de Groot JC; van Doorn R; Gruis NA; Löwik CW; Chuva de Sousa Lopes SM; Frijns JH; Huisman MA Differentiation; 2013; 85(4-5):173-81. PubMed ID: 23817083 [TBL] [Abstract][Full Text] [Related]
29. Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Carreira S; Goodall J; Aksan I; La Rocca SA; Galibert MD; Denat L; Larue L; Goding CR Nature; 2005 Feb; 433(7027):764-9. PubMed ID: 15716956 [TBL] [Abstract][Full Text] [Related]
30. Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Nakayama A; Nguyen MT; Chen CC; Opdecamp K; Hodgkinson CA; Arnheiter H Mech Dev; 1998 Jan; 70(1-2):155-66. PubMed ID: 9510032 [TBL] [Abstract][Full Text] [Related]
31. Expression patterns of MITF during human cutaneous embryogenesis: evidence for bulge epithelial expression and persistence of dermal melanoblasts. Gleason BC; Crum CP; Murphy GF J Cutan Pathol; 2008 Jul; 35(7):615-22. PubMed ID: 18312434 [TBL] [Abstract][Full Text] [Related]
32. The effects of NB-UVB on the hair follicle-derived neural crest stem cells differentiating into melanocyte lineage in vitro. Dong D; Jiang M; Xu X; Guan M; Wu J; Chen Q; Xiang L J Dermatol Sci; 2012 Apr; 66(1):20-8. PubMed ID: 22391242 [TBL] [Abstract][Full Text] [Related]
33. Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the Mitf basic-helix-loop-helix-zipper transcription factor. Opdecamp K; Nakayama A; Nguyen MT; Hodgkinson CA; Pavan WJ; Arnheiter H Development; 1997 Jun; 124(12):2377-86. PubMed ID: 9199364 [TBL] [Abstract][Full Text] [Related]
34. CtBP2 downregulation during neural crest specification induces expression of Mitf and REST, resulting in melanocyte differentiation and sympathoadrenal lineage suppression. Liang H; Fekete DM; Andrisani OM Mol Cell Biol; 2011 Mar; 31(5):955-70. PubMed ID: 21199918 [TBL] [Abstract][Full Text] [Related]
35. Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Potterf SB; Mollaaghababa R; Hou L; Southard-Smith EM; Hornyak TJ; Arnheiter H; Pavan WJ Dev Biol; 2001 Sep; 237(2):245-57. PubMed ID: 11543611 [TBL] [Abstract][Full Text] [Related]
36. Impaired growth and differentiation of diploid but not immortal melanoblasts from endothelin receptor B mutant (piebald) mice. Sviderskaya EV; Easty DJ; Bennett DC Dev Dyn; 1998 Dec; 213(4):452-63. PubMed ID: 9853966 [TBL] [Abstract][Full Text] [Related]
37. Transcriptional regulation of plasminogen activator inhibitor-1 by transforming growth factor-beta, activin A and microphthalmia-associated transcription factor. Murakami M; Ikeda T; Saito T; Ogawa K; Nishino Y; Nakaya K; Funaba M Cell Signal; 2006 Feb; 18(2):256-65. PubMed ID: 15961275 [TBL] [Abstract][Full Text] [Related]
38. Specific expression of Gsta4 in mouse cochlear melanocytes: a novel role for hearing and melanocyte differentiation. Uehara S; Izumi Y; Kubo Y; Wang CC; Mineta K; Ikeo K; Gojobori T; Tachibana M; Kikuchi T; Kobayashi T; Shibahara S; Taya C; Yonekawa H; Shiroishi T; Yamamoto H Pigment Cell Melanoma Res; 2009 Feb; 22(1):111-9. PubMed ID: 18983533 [TBL] [Abstract][Full Text] [Related]
39. Sphingolipid-mediated restoration of Mitf expression and repigmentation in vivo in a mouse model of hair graying. Saha B; Singh SK; Mallick S; Bera R; Datta PK; Mandal M; Roy S; Bhadra R Pigment Cell Melanoma Res; 2009 Apr; 22(2):205-18. PubMed ID: 19207217 [TBL] [Abstract][Full Text] [Related]
40. An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development. Greenhill ER; Rocco A; Vibert L; Nikaido M; Kelsh RN PLoS Genet; 2011 Sep; 7(9):e1002265. PubMed ID: 21909283 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]