These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24080289)

  • 1. Selective defunctionalization by TiO2 of monomeric phenolics from lignin pyrolysis into simple phenols.
    Mante OD; Rodriguez JA; Babu SP
    Bioresour Technol; 2013 Nov; 148():508-16. PubMed ID: 24080289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis.
    Bu Q; Lei H; Ren S; Wang L; Holladay J; Zhang Q; Tang J; Ruan R
    Bioresour Technol; 2011 Jul; 102(13):7004-7. PubMed ID: 21531545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals.
    Biswas B; Singh R; Kumar J; Khan AA; Krishna BB; Bhaskar T
    Bioresour Technol; 2016 Aug; 213():319-326. PubMed ID: 26873286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water.
    Fang Z; Sato T; Smith RL; Inomata H; Arai K; Kozinski JA
    Bioresour Technol; 2008 Jun; 99(9):3424-30. PubMed ID: 17881227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of kraft lignin over hierarchical MFI zeolite.
    Kim SS; Lee HW; Ryoo R; Kim W; Park SH; Jeon JK; Park YK
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2414-8. PubMed ID: 24745240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass.
    Bu Q; Lei H; Ren S; Wang L; Zhang Q; Tang J; Ruan R
    Bioresour Technol; 2012 Mar; 108():274-9. PubMed ID: 22261662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of aromatic amines via catalytic co-pyrolysis of lignin and phenol-formaldehyde resins with ammonia over commercial HZSM-5 zeolites.
    Xu L; He Z; Zhang H; Wu S; Dong C; Fang Z
    Bioresour Technol; 2021 Jan; 320(Pt A):124252. PubMed ID: 33137639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic transfer hydrogenolysis of lignin into monophenols over platinum-rhenium supported on titanium dioxide using isopropanol as in situ hydrogen source.
    Hu J; Zhang S; Xiao R; Jiang X; Wang Y; Sun Y; Lu P
    Bioresour Technol; 2019 May; 279():228-233. PubMed ID: 30735932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.
    Yang S; Yuan TQ; Li MF; Sun RC
    Int J Biol Macromol; 2015 Jan; 72():54-62. PubMed ID: 25109457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Consumption of water-insoluble phenolic products of lignin pyrolysis by the strain Penicillium tardum H-2].
    Karetnikova EA
    Prikl Biokhim Mikrobiol; 2006; 42(1):55-8. PubMed ID: 16521577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.
    Bu Q; Lei H; Wang L; Wei Y; Zhu L; Zhang X; Liu Y; Yadavalli G; Tang J
    Bioresour Technol; 2014 Jun; 162():142-7. PubMed ID: 24747393
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Kausar S; Altaf AA; Hamayun M; Rasool N; Hadait M; Akhtar A; Muhammad S; Badshah A; Shah SAA; Zakaria ZA
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32752133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.
    Yang S; Zhu W; Wang J; Chen Z
    J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.
    Anderson E; Crisci A; Murugappan K; Román-Leshkov Y
    ChemSusChem; 2017 May; 10(10):2226-2234. PubMed ID: 28371565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular products and radicals from pyrolysis of lignin.
    Kibet J; Khachatryan L; Dellinger B
    Environ Sci Technol; 2012 Dec; 46(23):12994-3001. PubMed ID: 23131040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aromatic chemicals by iron-catalyzed hydrotreatment of lignin pyrolysis vapor.
    Olcese RN; Lardier G; Bettahar M; Ghanbaja J; Fontana S; Carré V; Aubriet F; Petitjean D; Dufour A
    ChemSusChem; 2013 Aug; 6(8):1490-9. PubMed ID: 23784799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream.
    Ling CM; Mohamed AR; Bhatia S
    Chemosphere; 2004 Nov; 57(7):547-54. PubMed ID: 15488916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin.
    Jin Y; Cheng X; Zheng Z
    Bioresour Technol; 2010 Mar; 101(6):2046-8. PubMed ID: 19854642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders.
    McManamon C; Holmes JD; Morris MA
    J Hazard Mater; 2011 Oct; 193():120-7. PubMed ID: 21813241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol.
    Yuan Z; Cheng S; Leitch M; Xu CC
    Bioresour Technol; 2010 Dec; 101(23):9308-13. PubMed ID: 20667719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.