These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24080296)

  • 1. Probing electron transfer with Escherichia coli: a method to examine exoelectronics in microbial fuel cell type systems.
    Sugnaux M; Mermoud S; da Costa AF; Happe M; Fischer F
    Bioresour Technol; 2013 Nov; 148():567-73. PubMed ID: 24080296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells.
    Qiao Y; Li CM; Bao SJ; Lu Z; Hong Y
    Chem Commun (Camb); 2008 Mar; (11):1290-2. PubMed ID: 18389110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial electroactivity and viability depends on the carbon nanotube-coated sponge anode used in a microbial fuel cell.
    Ma H; Xia T; Bian C; Sun H; Liu Z; Wu C; Wang X; Xu P
    Bioelectrochemistry; 2018 Aug; 122():26-31. PubMed ID: 29518621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor.
    Ducommun R; Favre MF; Carrard D; Fischer F
    Yeast; 2010 Mar; 27(3):139-48. PubMed ID: 19946948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell.
    Wang Y; Li B; Cui D; Xiang X; Li W
    Biosens Bioelectron; 2014 Jan; 51():349-55. PubMed ID: 23994845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The utility of Shewanella japonica for microbial fuel cells.
    Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH
    Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-excreted mediator from Escherichia coli K-12 for electron transfer to carbon electrodes.
    Wang YF; Tsujimura S; Cheng SS; Kano K
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1439-46. PubMed ID: 17665190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials.
    Zhu X; Tokash JC; Hong Y; Logan BE
    Bioelectrochemistry; 2013 Apr; 90():30-5. PubMed ID: 23178374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges in microbial fuel cell development and operation.
    Kim BH; Chang IS; Gadd GM
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):485-94. PubMed ID: 17593364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Millimeter scale electron conduction through exoelectrogenic mixed species biofilms.
    Li C; Lesnik KL; Fan Y; Liu H
    FEMS Microbiol Lett; 2016 Aug; 363(15):. PubMed ID: 27279626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial-enzymatic-hybrid biological fuel cell with optimized growth conditions for Shewanella oneidensis DSP-10.
    Roy JN; Luckarift HR; Sizemore SR; Farrington KE; Lau C; Johnson GR; Atanassov P
    Enzyme Microb Technol; 2013 Jul; 53(2):123-7. PubMed ID: 23769313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does bioelectrochemical cell configuration and anode potential affect biofilm response?
    Kumar A; Katuri K; Lens P; Leech D
    Biochem Soc Trans; 2012 Dec; 40(6):1308-14. PubMed ID: 23176473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors.
    Jung S; Regan JM
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer interpretation of the biofilm-coated anode of a microbial fuel cell and the cathode modification effects on its power.
    Yang Y; Choi C; Xie G; Park JD; Ke S; Yu JS; Zhou J; Lim B
    Bioelectrochemistry; 2019 Jun; 127():94-103. PubMed ID: 30771661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions.
    Yang Y; Sun G; Guo J; Xu M
    Bioresour Technol; 2011 Jul; 102(14):7093-8. PubMed ID: 21571526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic microbial fuel cells with positive light response.
    Zou Y; Pisciotta J; Billmyre RB; Baskakov IV
    Biotechnol Bioeng; 2009 Dec; 104(5):939-46. PubMed ID: 19575441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells.
    Liu M; Yuan Y; Zhang LX; Zhuang L; Zhou SG; Ni JR
    Bioresour Technol; 2010 Mar; 101(6):1807-11. PubMed ID: 19879132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.