BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24080373)

  • 1. Restoring ionotropic inhibition as an analgesic strategy.
    Bonin RP; De Koninck Y
    Neurosci Lett; 2013 Dec; 557 Pt A():43-51. PubMed ID: 24080373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride homeostasis differentially affects GABA(A) receptor- and glycine receptor-mediated effects on spontaneous circuit activity in hippocampal cell culture.
    Wang W; Xu TL
    Neurosci Lett; 2006 Oct; 406(1-2):11-6. PubMed ID: 16905250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased intracellular GABA levels contribute to spinal cord stimulation-induced analgesia in rats suffering from painful peripheral neuropathy: the role of KCC2 and GABA(A) receptor-mediated inhibition.
    Janssen SP; Gerard S; Raijmakers ME; Truin M; Van Kleef M; Joosten EA
    Neurochem Int; 2012 Jan; 60(1):21-30. PubMed ID: 22107704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor alpha3 subunit gene.
    Rajalu M; Müller UC; Caley A; Harvey RJ; Poisbeau P
    Eur J Neurosci; 2009 Dec; 30(12):2284-92. PubMed ID: 20092571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain.
    Coull JA; Boudreau D; Bachand K; Prescott SA; Nault F; Sík A; De Koninck P; De Koninck Y
    Nature; 2003 Aug; 424(6951):938-42. PubMed ID: 12931188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased C-fiber nociceptive input potentiates inhibitory glycinergic transmission in the spinal dorsal horn.
    Zhou HY; Zhang HM; Chen SR; Pan HL
    J Pharmacol Exp Ther; 2008 Mar; 324(3):1000-10. PubMed ID: 18079355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversal of pathological pain through specific spinal GABAA receptor subtypes.
    Knabl J; Witschi R; Hösl K; Reinold H; Zeilhofer UB; Ahmadi S; Brockhaus J; Sergejeva M; Hess A; Brune K; Fritschy JM; Rudolph U; Möhler H; Zeilhofer HU
    Nature; 2008 Jan; 451(7176):330-4. PubMed ID: 18202657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride dysregulation and inhibitory receptor blockade yield equivalent disinhibition of spinal neurons yet are differentially reversed by carbonic anhydrase blockade.
    Lee KY; Prescott SA
    Pain; 2015 Dec; 156(12):2431-2437. PubMed ID: 26186265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity.
    Cronin JN; Bradbury EJ; Lidierth M
    Pain; 2004 Nov; 112(1-2):156-63. PubMed ID: 15494196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAA and glycine receptor-mediated transmission in rat lamina II neurones: relevance to the analgesic actions of neuroactive steroids.
    Mitchell EA; Gentet LJ; Dempster J; Belelli D
    J Physiol; 2007 Sep; 583(Pt 3):1021-40. PubMed ID: 17656439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine receptors: a new therapeutic target in pain pathways.
    Lynch JW; Callister RJ
    Curr Opin Investig Drugs; 2006 Jan; 7(1):48-53. PubMed ID: 16425671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased nociceptive input rapidly modulates spinal GABAergic transmission through endogenously released glutamate.
    Zhou HY; Zhang HM; Chen SR; Pan HL
    J Neurophysiol; 2007 Jan; 97(1):871-82. PubMed ID: 17108089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic inhibition and disinhibition in the spinal dorsal horn.
    Prescott SA
    Prog Mol Biol Transl Sci; 2015; 131():359-83. PubMed ID: 25744679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing neuronal chloride extrusion rescues α2/α3 GABA
    Lorenzo LE; Godin AG; Ferrini F; Bachand K; Plasencia-Fernandez I; Labrecque S; Girard AA; Boudreau D; Kianicka I; Gagnon M; Doyon N; Ribeiro-da-Silva A; De Koninck Y
    Nat Commun; 2020 Feb; 11(1):869. PubMed ID: 32054836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential GABAergic disinhibition during the development of painful peripheral neuropathy.
    Janssen SP; Truin M; Van Kleef M; Joosten EA
    Neuroscience; 2011 Jun; 184():183-94. PubMed ID: 21496475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic restoration of spinal inhibition via druggable enhancement of potassium-chloride cotransporter KCC2-mediated chloride extrusion in peripheral neuropathic pain.
    Kahle KT; Khanna A; Clapham DE; Woolf CJ
    JAMA Neurol; 2014 May; 71(5):640-5. PubMed ID: 24615367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Antinociceptive effects of glycine transporter inhibitors in neuropathic pain models in mice].
    Morita K; Motoyama N; Kitayama T; Morioka N; Dohi T
    Nihon Yakurigaku Zasshi; 2007 Dec; 130(6):458-63. PubMed ID: 18079595
    [No Abstract]   [Full Text] [Related]  

  • 18. Glycinergic transmission.
    Kirsch J
    Cell Tissue Res; 2006 Nov; 326(2):535-40. PubMed ID: 16807723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diabetes affects the expression of GABA and potassium chloride cotransporter in the spinal cord: a study in streptozotocin diabetic rats.
    Morgado C; Pinto-Ribeiro F; Tavares I
    Neurosci Lett; 2008 Jun; 438(1):102-6. PubMed ID: 18457921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of cation-chloride-cotransporters (CCC) in pain and hyperalgesia.
    Price TJ; Cervero F; de Koninck Y
    Curr Top Med Chem; 2005; 5(6):547-55. PubMed ID: 16022677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.