These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24080417)

  • 1. Personal exposure to ultrafine particles: the influence of time-activity patterns.
    Buonanno G; Stabile L; Morawska L
    Sci Total Environ; 2014 Jan; 468-469():903-7. PubMed ID: 24080417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual dose and exposure of Italian children to ultrafine particles.
    Buonanno G; Marini S; Morawska L; Fuoco FC
    Sci Total Environ; 2012 Nov; 438():271-7. PubMed ID: 23000716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafine particle concentrations and exposures in seven residences in northern California.
    Bhangar S; Mullen NA; Hering SV; Kreisberg NM; Nazaroff WW
    Indoor Air; 2011 Apr; 21(2):132-44. PubMed ID: 21029183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personal day-time exposure to ultrafine particles in different microenvironments.
    Gu J; Kraus U; Schneider A; Hampel R; Pitz M; Breitner S; Wolf K; Hänninen O; Peters A; Cyrys J
    Int J Hyg Environ Health; 2015 Mar; 218(2):188-95. PubMed ID: 25458919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personal exposure to ultrafine particles.
    Wallace L; Ott W
    J Expo Sci Environ Epidemiol; 2011; 21(1):20-30. PubMed ID: 20087407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lung deposition of fine and ultrafine particles outdoors and indoors during a cooking event and a no activity period.
    Mitsakou C; Housiadas C; Eleftheriadis K; Vratolis S; Helmis C; Asimakopoulos D
    Indoor Air; 2007 Apr; 17(2):143-52. PubMed ID: 17391237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of lifestyle on airborne particle surface area doses received by different Western populations.
    Pacitto A; Stabile L; Moreno T; Kumar P; Wierzbicka A; Morawska L; Buonanno G
    Environ Pollut; 2018 Jan; 232():113-122. PubMed ID: 28919325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of personal exposure to inhalable indoor and outdoor particulate matter for student residents of an academic campus (IIT-Kanpur).
    Devi JJ; Gupta T; Tripathi SN; Ujinwal KK
    Inhal Toxicol; 2009 Dec; 21(14):1208-22. PubMed ID: 19807217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Personal exposure to ultrafine particles: Two-level statistical modeling of background exposure and time-activity patterns during three seasons.
    Deffner V; Küchenhoff H; Maier V; Pitz M; Cyrys J; Breitner S; Schneider A; Gu J; Geruschkat U; Peters A
    J Expo Sci Environ Epidemiol; 2016; 26(1):17-25. PubMed ID: 25407347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Levels of ultrafine particles in different microenvironments--implications to children exposure.
    Diapouli E; Chaloulakou A; Spyrellis N
    Sci Total Environ; 2007 Dec; 388(1-3):128-36. PubMed ID: 17888492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal variation of size-fractionated particulate matter and carbon monoxide in selected microenvironments of the Milan urban area.
    Spinazzè A; Cattaneo A; Garramone G; Cavallo DM
    J Occup Environ Hyg; 2013; 10(11):652-62. PubMed ID: 24116669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber.
    Afshari A; Matson U; Ekberg LE
    Indoor Air; 2005 Apr; 15(2):141-50. PubMed ID: 15737157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships of outdoor and indoor ultrafine particles at residences downwind of a major international border crossing in Buffalo, NY.
    McAuley TR; Fisher R; Zhou X; Jaques PA; Ferro AR
    Indoor Air; 2010 Aug; 20(4):298-308. PubMed ID: 20546036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing and predicting ultrafine particle counts in Canadian classrooms during the winter months: model development and evaluation.
    Weichenthal S; Dufresne A; Infante-Rivard C; Joseph L
    Environ Res; 2008 Mar; 106(3):349-60. PubMed ID: 17919560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indoor ultrafine particle exposures and home heating systems: a cross-sectional survey of Canadian homes during the winter months.
    Weichenthal S; Dufresne A; Infante-Rivard C; Joseph L
    J Expo Sci Environ Epidemiol; 2007 May; 17(3):288-97. PubMed ID: 17033678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of ultrafine particles in Portuguese preschools: levels and exposure doses.
    Fonseca J; Slezakova K; Morais S; Pereira MC
    Indoor Air; 2014 Dec; 24(6):618-28. PubMed ID: 24689947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring of 1-min personal particulate matter exposures in relation to voice-recorded time-activity data.
    Quintana PJ; Valenzia JR; Delfino RJ; Liu LJ
    Environ Res; 2001 Dec; 87(3):199-213. PubMed ID: 11771933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A field application of a personal sensor for ultrafine particle exposure in children.
    Ryan PH; Son SY; Wolfe C; Lockey J; Brokamp C; LeMasters G
    Sci Total Environ; 2015 Mar; 508():366-73. PubMed ID: 25497676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of continuous particle monitors for personal, indoor, and outdoor exposures.
    Wallace LA; Wheeler AJ; Kearney J; Van Ryswyk K; You H; Kulka RH; Rasmussen PE; Brook JR; Xu X
    J Expo Sci Environ Epidemiol; 2011; 21(1):49-64. PubMed ID: 20502493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.