BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24080647)

  • 1. GRL-04810 and GRL-05010, difluoride-containing nonpeptidic HIV-1 protease inhibitors (PIs) that inhibit the replication of multi-PI-resistant HIV-1 in vitro and possess favorable lipophilicity that may allow blood-brain barrier penetration.
    Salcedo Gómez PM; Amano M; Yashchuk S; Mizuno A; Das D; Ghosh AK; Mitsuya H
    Antimicrob Agents Chemother; 2013 Dec; 57(12):6110-21. PubMed ID: 24080647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel HIV-1 protease inhibitors (PIs) containing a bicyclic P2 functional moiety, tetrahydropyrano-tetrahydrofuran, that are potent against multi-PI-resistant HIV-1 variants.
    Ide K; Aoki M; Amano M; Koh Y; Yedidi RS; Das D; Leschenko S; Chapsal B; Ghosh AK; Mitsuya H
    Antimicrob Agents Chemother; 2011 Apr; 55(4):1717-27. PubMed ID: 21282450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorine Modifications Contribute to Potent Antiviral Activity against Highly Drug-Resistant HIV-1 and Favorable Blood-Brain Barrier Penetration Property of Novel Central Nervous System-Targeting HIV-1 Protease Inhibitors
    Amano M; Yedidi RS; Salcedo-Gómez PM; Hayashi H; Hasegawa K; Martyr CD; Ghosh AK; Mitsuya H
    Antimicrob Agents Chemother; 2022 Feb; 66(2):e0171521. PubMed ID: 34978889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activities of atazanavir (BMS-232632) against a large panel of human immunodeficiency virus type 1 clinical isolates resistant to one or more approved protease inhibitors.
    Colonno RJ; Thiry A; Limoli K; Parkin N
    Antimicrob Agents Chemother; 2003 Apr; 47(4):1324-33. PubMed ID: 12654666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing multidrug-resistance and protein-ligand interactions with oxatricyclic designed ligands in HIV-1 protease inhibitors.
    Ghosh AK; Xu CX; Rao KV; Baldridge A; Agniswamy J; Wang YF; Weber IT; Aoki M; Miguel SG; Amano M; Mitsuya H
    ChemMedChem; 2010 Nov; 5(11):1850-4. PubMed ID: 20827746
    [No Abstract]   [Full Text] [Related]  

  • 6. HIV-1 protease with 10 lopinavir and darunavir resistance mutations exhibits altered inhibition, structural rearrangements and extreme dynamics.
    Wong-Sam A; Wang YF; Kneller DW; Kovalevsky AY; Ghosh AK; Harrison RW; Weber IT
    J Mol Graph Model; 2022 Dec; 117():108315. PubMed ID: 36108568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of protease dimerization inhibition activity of darunavir is associated with the acquisition of resistance to darunavir by HIV-1.
    Koh Y; Aoki M; Danish ML; Aoki-Ogata H; Amano M; Das D; Shafer RW; Ghosh AK; Mitsuya H
    J Virol; 2011 Oct; 85(19):10079-89. PubMed ID: 21813613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and synthesis of potent HIV-1 protease inhibitors incorporating hexahydrofuropyranol-derived high affinity P(2) ligands: structure-activity studies and biological evaluation.
    Ghosh AK; Chapsal BD; Baldridge A; Steffey MP; Walters DE; Koh Y; Amano M; Mitsuya H
    J Med Chem; 2011 Jan; 54(2):622-34. PubMed ID: 21194227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants.
    Altman MD; Ali A; Reddy GS; Nalam MN; Anjum SG; Cao H; Chellappan S; Kairys V; Fernandes MX; Gilson MK; Schiffer CA; Rana TM; Tidor B
    J Am Chem Soc; 2008 May; 130(19):6099-113. PubMed ID: 18412349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piperidine scaffold as the novel P2-ligands in cyclopropyl-containing HIV-1 protease inhibitors: Structure-based design, synthesis, biological evaluation and docking study.
    Zhou H; Zhu M; Ma L; Zhou J; Dong B; Zhang G; Cen S; Wang Y; Wang J
    PLoS One; 2020; 15(7):e0235483. PubMed ID: 32697773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design, synthesis and biological evaluation of novel HIV-1 protease inhibitors containing 2-phenylacetamide derivatives as P2 ligands with potent activity against DRV-Resistant HIV-1 variants.
    Meng S; Gao Y; Qiang G; Hu Z; Shan Q; Wang J; Wang Y; Mou J
    Bioorg Med Chem Lett; 2024 Mar; 101():129651. PubMed ID: 38342391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance.
    Parai MK; Huggins DJ; Cao H; Nalam MN; Ali A; Schiffer CA; Tidor B; Rana TM
    J Med Chem; 2012 Jul; 55(14):6328-41. PubMed ID: 22708897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide variation in susceptibility of transmitted/founder HIV-1 subtype C Isolates to protease inhibitors and association with in vitro replication efficiency.
    Sutherland KA; Collier DA; Claiborne DT; Prince JL; Deymier MJ; Goldstein RA; Hunter E; Gupta RK
    Sci Rep; 2016 Nov; 6():38153. PubMed ID: 27901085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of HIV-1 protease inhibitors incorporating oxazolidinones as P2/P2' ligands in pseudosymmetric dipeptide isosteres.
    Reddy GS; Ali A; Nalam MN; Anjum SG; Cao H; Nathans RS; Schiffer CA; Rana TM
    J Med Chem; 2007 Sep; 50(18):4316-28. PubMed ID: 17696512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV.
    Ghosh AK; Dawson ZL; Mitsuya H
    Bioorg Med Chem; 2007 Dec; 15(24):7576-80. PubMed ID: 17900913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of HIV-1 CRF_01 A/E protease inhibitor resistance: structural determinants for maintaining sensitivity and developing resistance to atazanavir.
    Clemente JC; Coman RM; Thiaville MM; Janka LK; Jeung JA; Nukoolkarn S; Govindasamy L; Agbandje-McKenna M; McKenna R; Leelamanit W; Goodenow MM; Dunn BM
    Biochemistry; 2006 May; 45(17):5468-77. PubMed ID: 16634628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical characterization of a non-peptidomimetic HIV protease inhibitor with improved metabolic stability.
    Mulato A; Lansdon E; Aoyama R; Voigt J; Lee M; Liclican A; Lee G; Singer E; Stafford B; Gong R; Murray B; Chan J; Lee J; Xu Y; Ahmadyar S; Gonzalez A; Cho A; Stepan GJ; Schmitz U; Schultz B; Marchand B; Brumshtein B; Wang R; Yu H; Cihlar T; Xu L; Yant SR
    Antimicrob Agents Chemother; 2024 Apr; 68(4):e0137323. PubMed ID: 38380945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds.
    Yedidi RS; Liu Z; Wang Y; Brunzelle JS; Kovari IA; Woster PM; Kovari LC; Gupta D
    Biochem Biophys Res Commun; 2012 May; 421(3):413-7. PubMed ID: 22469467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FMO-guided design of darunavir analogs as HIV-1 protease inhibitors.
    Chuntakaruk H; Hengphasatporn K; Shigeta Y; Aonbangkhen C; Lee VS; Khotavivattana T; Rungrotmongkol T; Hannongbua S
    Sci Rep; 2024 Feb; 14(1):3639. PubMed ID: 38351065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced molecular mechanisms of modified DRV compounds in targeting HIV-1 protease mutations and interrupting monomer dimerization.
    Tang B; Luo S; Wang Q; Gao P; Duan L
    Phys Chem Chem Phys; 2024 Feb; 26(6):4989-5001. PubMed ID: 38258432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.