These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 240812)
1. Conversion of Escherichia coli cell-produced metabolic energy into electric form. Griniuviene B; Chmieliauskaite V; Melvydas V; Dzheja P; Grinius L J Bioenerg; 1975 Mar; 7(1):17-38. PubMed ID: 240812 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange, and counterflow. Kaczorowski GJ; Kaback HR Biochemistry; 1979 Aug; 18(17):3691-7. PubMed ID: 38836 [No Abstract] [Full Text] [Related]
3. ATP synthesis driven by protonmotive force imposed across Escherichia coli cell membranes. Grinius L; Slusnyte R; Griniuviene B FEBS Lett; 1975 Oct; 57(3):290-3. PubMed ID: 241667 [No Abstract] [Full Text] [Related]
4. K+-dependent Na+ transport driven by respiration in Escherichia coli cells and membrane vesicles. Verkhovskaya ML; Verkhovsky MI; Wikström M Biochim Biophys Acta; 1996 Mar; 1273(3):207-16. PubMed ID: 8616158 [TBL] [Abstract][Full Text] [Related]
5. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium. Trchounian A; Ohanjayan E; Zakharyan E Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260 [TBL] [Abstract][Full Text] [Related]
6. An ecf mutation in Escherichia coli pleiotropically affecting energy coupling in active transport but not generation or maintenance of membrane potential. Hong JS J Biol Chem; 1977 Dec; 252(23):8582-8. PubMed ID: 21876 [No Abstract] [Full Text] [Related]
7. Protonmotive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli. Wilson DM; Alderette JF; Maloney PC; Wilson TH J Bacteriol; 1976 Apr; 126(1):327-37. PubMed ID: 4427 [TBL] [Abstract][Full Text] [Related]
8. Extrusion of sodium ions energized by respiration and glycolysis in Escherichia coli. Tsuchiya T; Takeda K J Biochem; 1979 Jul; 86(1):225-30. PubMed ID: 39066 [TBL] [Abstract][Full Text] [Related]
9. [Electrophoresis of chloride ions and changes in the membrane potential of energized mitochondria]. Antonov VF; Ivanov AS Biofizika; 1975; 20(4):642-5. PubMed ID: 1201298 [TBL] [Abstract][Full Text] [Related]
10. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation. Bakker EP Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627 [TBL] [Abstract][Full Text] [Related]
11. Energy-linked transport of permeant ions in Escherichia coli cells: evidence for membrane potential generation by proton-pump. Griniuviene B; Chmieliauskaite V; Grinius L Biochem Biophys Res Commun; 1974 Jan; 56(1):206-13. PubMed ID: 4595971 [No Abstract] [Full Text] [Related]
12. Magnitude of the protonmotive force in respiring Staphylococcus aureus and Escherichia coli. Collins SH; Hamilton WA J Bacteriol; 1976 Jun; 126(3):1224-31. PubMed ID: 7546 [TBL] [Abstract][Full Text] [Related]
13. Generation of a transmembrane electric potential during respiration by Azotobacter vinelandii membrand vesicles. Bhattacharyya P; Shapiro SA; Barnes EM J Bacteriol; 1977 Feb; 129(2):756-62. PubMed ID: 838687 [TBL] [Abstract][Full Text] [Related]
14. [The role of a protonmotive force in genetic transformation of Bacillus subtilis]. Griniuvene BB; Grinius LL; Kiasushinite RIu; Khaustova LP; Iasĭtis AA Biokhimiia; 1978 Sep; 43(9):1539-48. PubMed ID: 102371 [TBL] [Abstract][Full Text] [Related]
15. Characteristics of energy-linked proton translocation in liposome reconstituted bovine cytochrome bc1 complex. Influence of the protonmotive force on the H+/e- stoichiometry. Cocco T; Lorusso M; Di Paola M; Minuto M; Papa S Eur J Biochem; 1992 Oct; 209(1):475-81. PubMed ID: 1327781 [TBL] [Abstract][Full Text] [Related]
16. Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients. MacDonald RE; Lanyi JK; Greene RV Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3167-70. PubMed ID: 20621 [TBL] [Abstract][Full Text] [Related]
17. Phosphate exchange in the pit transport system in Escherichia coli. Rosenberg H; Russell LM; Jacomb PA; Chegwidden K J Bacteriol; 1982 Jan; 149(1):123-30. PubMed ID: 7033203 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of K+ transport and metabolism of Escherichia coli by ethacrynic acid. Günther T; Dorn F; Haug M; Pellnitz W Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(1):97-107. PubMed ID: 4275892 [No Abstract] [Full Text] [Related]
20. Flux ratio of valinomycin-mediated K+ fluxes across the human red cell membrane in the presence of the protonophore CCCP. Bennekou P; Christophersen P J Membr Biol; 1986; 93(3):221-7. PubMed ID: 3820279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]