These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24081467)

  • 1. Effect of freezing rate and dendritic ice formation on concentration profiles of proteins frozen in cylindrical vessels.
    Rodrigues MA; Miller MA; Glass MA; Singh SK; Johnston KP
    J Pharm Sci; 2011 Apr; 100(4):1316-29. PubMed ID: 24081467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frozen-state storage stability of a monoclonal antibody: aggregation is impacted by freezing rate and solute distribution.
    Miller MA; Rodrigues MA; Glass MA; Singh SK; Johnston KP; Maynard JA
    J Pharm Sci; 2013 Apr; 102(4):1194-208. PubMed ID: 23400717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of heat flow direction for reproducible and homogeneous freezing of bulk protein solutions.
    Rodrigues MA; Balzan G; Rosa M; Gomes D; de Azevedo EG; Singh SK; Matos HA; Geraldes V
    Biotechnol Prog; 2013; 29(5):1212-21. PubMed ID: 23804427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein and solute distribution in drug substance containers during frozen storage and post-thawing: a tool to understand and define freezing-thawing parameters in biotechnology process development.
    Kolhe P; Badkar A
    Biotechnol Prog; 2011; 27(2):494-504. PubMed ID: 21302371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a laboratory-scale container for freezing protein solutions with detailed evaluation of a freezing process simulation.
    Roessl U; Jajcevic D; Leitgeb S; Khinast JG; Nidetzky B
    J Pharm Sci; 2014 Feb; 103(2):417-26. PubMed ID: 24338205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Nondestructive Method for Measuring Protein Distribution in Frozen Drug Substance.
    Du C; Borwankar A; Singh N; Borys M; Li ZJ
    J Pharm Sci; 2017 Aug; 106(8):1978-1986. PubMed ID: 28483421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ spectroscopic quantification of protein-ice interactions.
    Twomey A; Less R; Kurata K; Takamatsu H; Aksan A
    J Phys Chem B; 2013 Jul; 117(26):7889-97. PubMed ID: 23742723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopy as a process analytical technology to investigate biopharmaceutical freeze concentration processes.
    Weber D; Hubbuch J
    Biotechnol Bioeng; 2021 Dec; 118(12):4708-4719. PubMed ID: 34496028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into ice-growth inhibition by trehalose and alginate oligosaccharides in peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage.
    Zhang B; Cao HJ; Lin HM; Deng SG; Wu H
    Food Chem; 2019 Apr; 278():482-490. PubMed ID: 30583401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding.
    Singh SK; Kolhe P; Mehta AP; Chico SC; Lary AL; Huang M
    Pharm Res; 2011 Apr; 28(4):873-85. PubMed ID: 21213025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Freeze-Thaw of Protein Solutions: Study of the Relative Contributions of Freeze-Concentration and Ice Surface Area on Stability of Lactate Dehydrogenase.
    Minatovicz B; Sansare S; Mehta T; Bogner RH; Chaudhuri B
    J Pharm Sci; 2023 Feb; 112(2):482-491. PubMed ID: 36162492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles.
    Yu Z; Garcia AS; Johnston KP; Williams RO
    Eur J Pharm Biopharm; 2004 Nov; 58(3):529-37. PubMed ID: 15451527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microheterogeneity in frozen protein solutions.
    Twomey A; Kurata K; Nagare Y; Takamatsu H; Aksan A
    Int J Pharm; 2015 Jun; 487(1-2):91-100. PubMed ID: 25888798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of Protein Content and Number of Aggregates in Monoclonal Antibody Formulation After Large-Scale Freezing.
    Hauptmann A; Hoelzl G; Loerting T
    AAPS PharmSciTech; 2019 Jan; 20(2):72. PubMed ID: 30631964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenomena at the advancing ice-liquid interface: solutes, particles and biological cells.
    Körber C
    Q Rev Biophys; 1988 May; 21(2):229-98. PubMed ID: 3043537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the individual contributions of ice formation and freeze-concentration on isothermal stability of lactate dehydrogenase during freezing.
    Bhatnagar BS; Pikal MJ; Bogner RH
    J Pharm Sci; 2008 Feb; 97(2):798-814. PubMed ID: 17506511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells.
    Nakamura T; Takagi H; Shima J
    Cryobiology; 2009 Apr; 58(2):170-4. PubMed ID: 19126409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum conditions for cryoquenching of small tissue blocks in liquid coolants.
    Elder HY; Gray CC; Jardine AG; Chapman JN; Biddlecombe WH
    J Microsc; 1982 Apr; 126(Pt 1):45-61. PubMed ID: 7069794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-plate freeze concentration: Recovery of solutes occluded in the ice and determination of thawing time.
    Gulfo R; Auleda JM; Moreno FL; Ruiz Y; Hernández E; Raventós M
    Food Sci Technol Int; 2014 Sep; 20(6):405-19. PubMed ID: 23785068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.