These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24081604)

  • 21. CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering.
    Saifaldeen M; Al-Ansari DE; Ramotar D; Aouida M
    Cells; 2020 Nov; 9(11):. PubMed ID: 33233344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monomeric site-specific nucleases for genome editing.
    Kleinstiver BP; Wolfs JM; Kolaczyk T; Roberts AK; Hu SX; Edgell DR
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8061-6. PubMed ID: 22566637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mojo Hand, a TALEN design tool for genome editing applications.
    Neff KL; Argue DP; Ma AC; Lee HB; Clark KJ; Ekker SC
    BMC Bioinformatics; 2013 Jan; 14():1. PubMed ID: 23323762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tandem repeat modification during double-strand break repair induced by an engineered TAL effector nuclease in zebrafish genome.
    Huang W; Zheng J; He Y; Luo C
    PLoS One; 2013; 8(12):e84176. PubMed ID: 24386347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Creating designed zinc-finger nucleases with minimal cytotoxicity.
    Ramalingam S; Kandavelou K; Rajenderan R; Chandrasegaran S
    J Mol Biol; 2011 Jan; 405(3):630-41. PubMed ID: 21094162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TAL effectors: tools for DNA targeting.
    Jankele R; Svoboda P
    Brief Funct Genomics; 2014 Sep; 13(5):409-19. PubMed ID: 24907364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity.
    Sakuma T; Ochiai H; Kaneko T; Mashimo T; Tokumasu D; Sakane Y; Suzuki K; Miyamoto T; Sakamoto N; Matsuura S; Yamamoto T
    Sci Rep; 2013 Nov; 3():3379. PubMed ID: 24287550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic domain of restriction endonuclease BmrI as a cleavage module for engineering endonucleases with novel substrate specificities.
    Chan SH; Bao Y; Ciszak E; Laget S; Xu SY
    Nucleic Acids Res; 2007; 35(18):6238-48. PubMed ID: 17855396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detailed analysis of targeted gene mutations caused by the Platinum-Fungal TALENs in Aspergillus oryzae RIB40 strain and a ligD disruptant.
    Mizutani O; Arazoe T; Toshida K; Hayashi R; Ohsato S; Sakuma T; Yamamoto T; Kuwata S; Yamada O
    J Biosci Bioeng; 2017 Mar; 123(3):287-293. PubMed ID: 27780671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient TALEN construction and evaluation methods for human cell and animal applications.
    Sakuma T; Hosoi S; Woltjen K; Suzuki K; Kashiwagi K; Wada H; Ochiai H; Miyamoto T; Kawai N; Sasakura Y; Matsuura S; Okada Y; Kawahara A; Hayashi S; Yamamoto T
    Genes Cells; 2013 Apr; 18(4):315-26. PubMed ID: 23388034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chimeras of the homing endonuclease PI-SceI and the homologous Candida tropicalis intein: a study to explore the possibility of exchanging DNA-binding modules to obtain highly specific endonucleases with altered specificity.
    Steuer S; Pingoud V; Pingoud A; Wende W
    Chembiochem; 2004 Feb; 5(2):206-13. PubMed ID: 14760742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TALENs: customizable molecular DNA scissors for genome engineering of plants.
    Chen K; Gao C
    J Genet Genomics; 2013 Jun; 40(6):271-9. PubMed ID: 23790626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs).
    Moore FE; Reyon D; Sander JD; Martinez SA; Blackburn JS; Khayter C; Ramirez CL; Joung JK; Langenau DM
    PLoS One; 2012; 7(5):e37877. PubMed ID: 22655075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers.
    Briggs AW; Rios X; Chari R; Yang L; Zhang F; Mali P; Church GM
    Nucleic Acids Res; 2012 Aug; 40(15):e117. PubMed ID: 22740649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme.
    Wang J; Friedman G; Doyon Y; Wang NS; Li CJ; Miller JC; Hua KL; Yan JJ; Babiarz JE; Gregory PD; Holmes MC
    Genome Res; 2012 Jul; 22(7):1316-26. PubMed ID: 22434427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity.
    Guilinger JP; Pattanayak V; Reyon D; Tsai SQ; Sander JD; Joung JK; Liu DR
    Nat Methods; 2014 Apr; 11(4):429-35. PubMed ID: 24531420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitation and analysis of the formation of HO-endonuclease stimulated chromosomal translocations by single-strand annealing in Saccharomyces cerevisiae.
    Liddell L; Manthey G; Pannunzio N; Bailis A
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TAL Effector DNA-Binding Principles and Specificity.
    Richter A; Streubel J; Boch J
    Methods Mol Biol; 2016; 1338():9-25. PubMed ID: 26443210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease.
    Sun N; Liang J; Abil Z; Zhao H
    Mol Biosyst; 2012 Apr; 8(4):1255-63. PubMed ID: 22301904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-specific gene targeting using transcription activator-like effector (TALE)-based nuclease in Brassica oleracea.
    Sun Z; Li N; Huang G; Xu J; Pan Y; Wang Z; Tang Q; Song M; Wang X
    J Integr Plant Biol; 2013 Nov; 55(11):1092-103. PubMed ID: 23870552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.