BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24081816)

  • 1. The impact of stormwater treatment areas and agricultural best management practices on water quality in the Everglades Protection Area.
    Entry JA; Gottlieb A
    Environ Monit Assess; 2014 Feb; 186(2):1023-37. PubMed ID: 24081816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing phosphorus levels delivered to Everglades National Park, Florida, USA.
    Surratt D; Aumen NG
    Environ Manage; 2014 Aug; 54(2):223-39. PubMed ID: 24844463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surmounting the engineering challenges of Everglades restoration.
    Goforth GF
    Water Sci Technol; 2001; 44(11-12):295-302. PubMed ID: 11804110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of phosphorus retention in a South Florida treatment wetland.
    Nungesser MK; Chimney MJ
    Water Sci Technol; 2001; 44(11-12):109-15. PubMed ID: 11804081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water Quality of Inflows to the Everglades National Park over Three Decades (1985⁻2014) Analyzed by Multivariate Statistical Methods.
    Wan L; Fan X
    Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30200259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.
    Ged EC; Boyer TH
    Chemosphere; 2013 May; 91(7):921-7. PubMed ID: 23466281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal changes in soil phosphorus characteristics in a submerged aquatic vegetation-dominated treatment wetland.
    Zamorano MF; Bhomia RK; Chimney MJ; Ivanoff D
    J Environ Manage; 2018 Dec; 228():363-372. PubMed ID: 30241041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape.
    Childers DL; Doren RF; Jones R; Noe GB; Rugge M; Scinto LJ
    J Environ Qual; 2003; 32(1):344-62. PubMed ID: 12549575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Everglades restoration and water quality challenges in south Florida.
    Perry WB
    Ecotoxicology; 2008 Oct; 17(7):569-78. PubMed ID: 18679794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Best management practices for nutrient and sediment retention in urban stormwater runoff.
    Hogan DM; Walbridge MR
    J Environ Qual; 2007; 36(2):386-95. PubMed ID: 17255626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of long-term trends in selected physical and chemical parameters of inflows to Everglades National Park, 1977-2005.
    Fan X; Gu B; Hanlon EA; Li Y; Migliaccio K; Dreschel TW
    Environ Monit Assess; 2011 Jul; 178(1-4):525-36. PubMed ID: 20865321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape planning for agricultural nonpoint source pollution reduction I: a geographical allocation framework.
    Diebel MW; Maxted JT; Nowak PJ; Vander Zanden MJ
    Environ Manage; 2008 Nov; 42(5):789-802. PubMed ID: 18704561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in the research and demonstration of Everglades periphyton-based stormwater treatment areas.
    Bays JS; Knight RL; Wenkert L; Clarke R; Gong S
    Water Sci Technol; 2001; 44(11-12):123-30. PubMed ID: 11804083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model.
    Liu R; Zhang P; Wang X; Wang J; Yu W; Shen Z
    Environ Monit Assess; 2014 Dec; 186(12):9011-22. PubMed ID: 25236958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal patterns of soil phosphorus enrichment in Everglades water conservation area 2A.
    DeBusk WF; Newman S; Reddy KR
    J Environ Qual; 2001; 30(4):1438-46. PubMed ID: 11476523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient transport through a Vegetative Filter Strip with subsurface drainage.
    Bhattarai R; Kalita PK; Patel MK
    J Environ Manage; 2009 Apr; 90(5):1868-76. PubMed ID: 19171414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of Best Management Practices to Reduce Phosphorus Loading to a Highly Eutrophic Lake.
    Steinman AD; Hassett M; Oudsema M
    Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30257513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating ecological thresholds for phosphorus in the Everglades.
    Richardson CJ; King RS; Qian SS; Vaithiyanathan P; Qualls RG; Stow CA
    Environ Sci Technol; 2007 Dec; 41(23):8084-91. PubMed ID: 18186341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.
    Lemke AM; Kirkham KG; Lindenbaum TT; Herbert ME; Tear TH; Perry WL; Herkert JR
    J Environ Qual; 2011; 40(4):1215-28. PubMed ID: 21712591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Effects of floating aquatic vegetation and canal sediment on phosphorus in drainage discharges in agricultural canals: A case study in the everglades agricultural area, Florida".
    Tootoonchi M; Sexton AE; Cooper JA; Rodriguez AF; Orton M; Lang TA; Daroub SH
    Water Res; 2024 Aug; 259():121750. PubMed ID: 38851115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.