These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 24081910)
41. Stability of enterocin AS-48 in fruit and vegetable juices. Grande MJ; Lucas R; Valdivia E; Abriouel H; Maqueda M; Omar NB; Martínez-Cañamero M; Gálvezi A J Food Prot; 2005 Oct; 68(10):2085-94. PubMed ID: 16245711 [TBL] [Abstract][Full Text] [Related]
42. Fate of Alicyclobacillus spp. in enrichment broth and in juice concentrates. Oteiza JM; Soto S; Alvarenga VO; Sant'Ana AS; Gianuzzi L Int J Food Microbiol; 2015 Oct; 210():73-8. PubMed ID: 26102554 [TBL] [Abstract][Full Text] [Related]
43. Transcriptomic analysis of the antibacterial mechanism of ε-polylysine-functionalized magnetic composites against Alicyclobacillus acidoterrestris and its application in apple juice. Jia H; Cai R; Yue T; Xie Y J Sci Food Agric; 2024 Nov; 104(14):8734-8747. PubMed ID: 38979962 [TBL] [Abstract][Full Text] [Related]
44. Isolation of Alicyclobacillus acidoterrestris from fruit juices. Walls I; Chuyate R J AOAC Int; 2000; 83(5):1115-20. PubMed ID: 11048852 [TBL] [Abstract][Full Text] [Related]
45. Application of a Krypton-Chlorine Excilamp To Control Kang JW; Hong HN; Kang DH Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220842 [TBL] [Abstract][Full Text] [Related]
46. Contribution of amino acids to Alicyclobacillus acidoterrestris DSM 3922T resistance towards acid stress. Xu J; Zhao N; Meng X; Zhang T; Li J; Dong H; Wei X; Fan M Food Microbiol; 2023 Aug; 113():104273. PubMed ID: 37098432 [TBL] [Abstract][Full Text] [Related]
47. New insights into thermo-acidophilic properties of Alicyclobacillus acidoterrestris after acid adaptation. Zhao N; Zhang J; Qi Y; Xu J; Wei X; Fan M Food Microbiol; 2021 Apr; 94():103657. PubMed ID: 33279082 [TBL] [Abstract][Full Text] [Related]
48. Assessment of Spoilage Potential Posed by Alicyclobacillus spp. in Plant-Based Dairy Beverages Mixed with Fruit Juices during Storage. Kapetanakou AE; Passiou KE; Chalkou K; Skandamis PN J Food Prot; 2021 Mar; 84(3):497-508. PubMed ID: 33064148 [TBL] [Abstract][Full Text] [Related]
49. Modeling the effects of temperature and pH on the resistance of Alicyclobacillus acidoterrestris in conventional heat-treated fruit beverages through a meta-analysis approach. Silva LP; Gonzales-Barron U; Cadavez V; Sant'Ana AS Food Microbiol; 2015 Apr; 46():541-552. PubMed ID: 25475327 [TBL] [Abstract][Full Text] [Related]
50. Antimicrobial activity and mechanism of preservatives against Alicyclobacillus acidoterrestris and its application in apple juice. Wang Z; Tian Y; Wang Q; Guo T; Yuan Y; Yue T; Jia H; Ge Q; Zhao Z; Cai R Int J Food Microbiol; 2023 Feb; 386():110039. PubMed ID: 36473316 [TBL] [Abstract][Full Text] [Related]
51. Targeting the vanillic acid decarboxylase gene for Alicyclobacillus acidoterrestris quantification and guaiacol assessment in apple juices using real time PCR. Wang Z; Yue T; Yuan Y; Zhang Y; Gao Z; Cai R Int J Food Microbiol; 2021 Jan; 338():109006. PubMed ID: 33302194 [TBL] [Abstract][Full Text] [Related]
52. External pH is a cue for the behavioral switch that determines surface motility and biofilm formation of Alicyclobacillus acidoterrestris. Shemesh M; Pasvolsky R; Zakin V J Food Prot; 2014 Aug; 77(8):1418-23. PubMed ID: 25198607 [TBL] [Abstract][Full Text] [Related]
53. Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores. Kim NH; Ryang JH; Lee BS; Kim CT; Rhee MS Int J Food Microbiol; 2017 Apr; 246():80-84. PubMed ID: 28213319 [TBL] [Abstract][Full Text] [Related]
54. Detection of guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by sensory and chromatographic analyses, and comparison with spore and vegetative cell populations. Orr RV; Shewfelt RL; Huang CJ; Tefera S; Beuchat LR J Food Prot; 2000 Nov; 63(11):1517-22. PubMed ID: 11079693 [TBL] [Abstract][Full Text] [Related]
55. Identification and haplotype distribution of Alicyclobacillus spp. from different juices and beverages. Durak MZ; Churey JJ; Danyluk MD; Worobo RW Int J Food Microbiol; 2010 Sep; 142(3):286-91. PubMed ID: 20674056 [TBL] [Abstract][Full Text] [Related]
56. The Role of Solid Support Bound Metal Chelators on System-Dependent Synergy and Antagonism with Nisin. Herskovitz JE; Worobo RW; Goddard JM J Food Sci; 2019 Mar; 84(3):580-589. PubMed ID: 30714624 [TBL] [Abstract][Full Text] [Related]
57. Genotypic and Phenotypic Heterogeneity in Alicyclobacillus acidoterrestris: A Contribution to Species Characterization. Bevilacqua A; Mischitelli M; Pietropaolo V; Ciuffreda E; Sinigaglia M; Corbo MR PLoS One; 2015; 10(10):e0141228. PubMed ID: 26484547 [TBL] [Abstract][Full Text] [Related]
58. Antimicrobial photodynamic treatment as an alternative approach for Alicyclobacillus acidoterrestris inactivation. do Prado-Silva L; Gomes ATPC; Mesquita MQ; Neri-Numa IA; Pastore GM; Neves MGPMS; Faustino MAF; Almeida A; Braga GÚL; Sant'Ana AS Int J Food Microbiol; 2020 Nov; 333():108803. PubMed ID: 32798958 [TBL] [Abstract][Full Text] [Related]
59. Exploring the growth characteristics of Shang C; Zhang T; Xu J; Zhao N; Zhang W; Fan M Food Chem X; 2023 Oct; 19():100790. PubMed ID: 37780307 [TBL] [Abstract][Full Text] [Related]
60. Inactivation of Alicyclobacillus acidoterrestris spores by high pressure CO₂ in apple cream. Casas J; Valverde MT; Marín-Iniesta F; Calvo L Int J Food Microbiol; 2012 May; 156(1):18-24. PubMed ID: 22425334 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]