These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 240829)
21. NMR study of the molecular and electronic structure of the heme cavity of Aplysia metmyoglobin. Resonance assignments based on isotope labeling and proton nuclear Overhauser effect measurements. Pande U; La Mar GN; Lecomte JT; Ascoli F; Brunori M; Smith KM; Pandey RK; Parish DW; Thanabal V Biochemistry; 1986 Sep; 25(19):5638-46. PubMed ID: 3778878 [TBL] [Abstract][Full Text] [Related]
22. Proton magnetic resonance studies of carbonic anhydrase. I. Identification of histidine resonances. Pesando JM Biochemistry; 1975 Feb; 14(4):675-81. PubMed ID: 234738 [TBL] [Abstract][Full Text] [Related]
23. Proton magnetic resonance spectra or porcine muscle adenylate kinase and substrate complexes. McDonald GG; Cohn M J Biol Chem; 1975 Sep; 250(17):6947-54. PubMed ID: 239953 [TBL] [Abstract][Full Text] [Related]
24. Nuclear magnetic resonance studies of sperm whale myoglobin specifically enriched with 13C in the methionine methyl groups. Jones WC; Rothgeb TM; Gurd FR J Biol Chem; 1976 Dec; 251(23):7452-60. PubMed ID: 12165 [TBL] [Abstract][Full Text] [Related]
25. Nuclear-magnetic-resonance study of the histidine residues of S-peptide and S-protein and kinetics of 1H-2H exchange of ribonuclease A. Bradbury JH; Crompton MW; Teh JS Eur J Biochem; 1977 Dec; 81(2):411-22. PubMed ID: 23288 [TBL] [Abstract][Full Text] [Related]
26. Trimethylphosphine binding to horse-heart and sperm-whale myoglobins. Kinetics, proton magnetic resonance assignment and nuclear Overhauser effect investigation of the heme pocket. Brunel C; Bondon A; Simonneaux G Eur J Biochem; 1993 Jun; 214(2):405-14. PubMed ID: 8513790 [TBL] [Abstract][Full Text] [Related]
27. Proton nuclear magnetic resonance studies of histidines in horse carbonic anhydrase I. Forsman C; Jonsson BH; Lindskog S Biochim Biophys Acta; 1983 Oct; 748(2):300-7. PubMed ID: 6414519 [TBL] [Abstract][Full Text] [Related]
28. Proton-magnetic-resonance spectroscopic study of the histidine residues of bovine alpha-lactalbumin. Bradbury JH; Norton RS Eur J Biochem; 1975 May; 53(2):387-96. PubMed ID: 237758 [TBL] [Abstract][Full Text] [Related]
29. Resonance Raman and absorption spectroscopic detection of distal histidine--fluoride interactions in human methemoglobin fluoride and sperm whale metmyoglobin fluoride: measurements of distal histidine ionization constants. Asher SA; Adams ML; Schuster TM Biochemistry; 1981 Jun; 20(12):3339-46. PubMed ID: 7260037 [TBL] [Abstract][Full Text] [Related]
30. A 1H NMR comparison of the met-cyano complexes of elephant and sperm whale myoglobin. Assignment of labile proton resonances in the heme cavity and determination of the distal glutamine orientation from relaxation data. Krishnamoorthi R; La Mar GN; Mizukami H; Romero A J Biol Chem; 1984 Jul; 259(14):8826-31. PubMed ID: 6746625 [TBL] [Abstract][Full Text] [Related]
31. Proton-magnetic-resonance studies of the lysine residues of ribonuclease A. Brown LR; Bradbury JH Eur J Biochem; 1975 May; 54(1):219-27. PubMed ID: 238843 [TBL] [Abstract][Full Text] [Related]
32. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. I. Reinvestigation of the histidine peak assignments. Markley JL Biochemistry; 1975 Aug; 14(16):3546-54. PubMed ID: 240382 [TBL] [Abstract][Full Text] [Related]
33. Zymogen activation in serine proteinases. Proton magnetic resonance pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin Aalpha. Markley JL; IbaƱez IB Biochemistry; 1978 Oct; 17(22):4627-40. PubMed ID: 31898 [TBL] [Abstract][Full Text] [Related]
34. A comparison of the intrinsic fluorescence of red kangaroo, horse and sperm whale metmyoglobins. Hirsch RE; Peisach J Biochim Biophys Acta; 1986 Jul; 872(1-2):147-53. PubMed ID: 3730392 [TBL] [Abstract][Full Text] [Related]
35. Metmyoglobin/azide: the effect of heme-linked ionizations on the rate of complex formation. Lin J; Merryweather J; Vitello LB; Erman JE Arch Biochem Biophys; 1999 Feb; 362(1):148-58. PubMed ID: 9917339 [TBL] [Abstract][Full Text] [Related]
36. Proton magnetic resonance studies of carbonic anhydrase. II. Group controlling catalytic activity. Pesando JM Biochemistry; 1975 Feb; 14(4):681-8. PubMed ID: 234739 [TBL] [Abstract][Full Text] [Related]
37. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. III. Mutual electrostatic interaction between histidine residues 12 and 119. Markley JL; Finkenstadt WR Biochemistry; 1975 Aug; 14(16):3562-6. PubMed ID: 240383 [TBL] [Abstract][Full Text] [Related]
38. Proton and nitrogen-15 NMR spectroscopic studies of hydrogen ion-dependent pseudo-halide ion binding to chloroperoxidase. Lukat GS; Goff HM J Biol Chem; 1986 Dec; 261(35):16528-34. PubMed ID: 3023353 [TBL] [Abstract][Full Text] [Related]
39. Electrostatic calculations of side-chain pK(a) values in myoglobin and comparison with NMR data for histidines. Bashford D; Case DA; Dalvit C; Tennant L; Wright PE Biochemistry; 1993 Aug; 32(31):8045-56. PubMed ID: 8347606 [TBL] [Abstract][Full Text] [Related]
40. Proton magnetic resonance spectra of adrenodoxin: features of the aromatic region. Greenfield NJ; Wu XH; Jordan F Biochim Biophys Acta; 1989 May; 995(3):246-54. PubMed ID: 2706273 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]