These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24083456)

  • 1. Nacre-mimetic clay/xyloglucan bionanocomposites: a chemical modification route for hygromechanical performance at high humidity.
    Kochumalayil JJ; Morimune S; Nishino T; Ikkala O; Walther A; Berglund LA
    Biomacromolecules; 2013 Nov; 14(11):3842-9. PubMed ID: 24083456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired and highly oriented clay nanocomposites with a xyloglucan biopolymer matrix: extending the range of mechanical and barrier properties.
    Kochumalayil JJ; Bergenstråhle-Wohlert M; Utsel S; Wågberg L; Zhou Q; Berglund LA
    Biomacromolecules; 2013 Jan; 14(1):84-91. PubMed ID: 23198819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular adhesion at clay nanocomposite interfaces depends on counterion hydration-molecular dynamics simulation of montmorillonite/xyloglucan.
    Wang Y; Wohlert J; Bergenstråhle-Wohlert M; Kochumalayil JJ; Berglund LA; Tu Y; Ågren H
    Biomacromolecules; 2015 Jan; 16(1):257-65. PubMed ID: 25389796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deoxyguanosine phosphate mediated sacrificial bonds promote synergistic mechanical properties in nacre-mimetic nanocomposites.
    Martikainen L; Walther A; Seitsonen J; Berglund L; Ikkala O
    Biomacromolecules; 2013 Aug; 14(8):2531-5. PubMed ID: 23822180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites.
    Yao K; Huang S; Tang H; Xu Y; Buntkowsky G; Berglund LA; Zhou Q
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20169-20178. PubMed ID: 28530799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic supramolecular bonds preserve mechanical properties and enable synergetic performance at high humidity in water-borne, self-assembled nacre-mimetics.
    Das P; Walther A
    Nanoscale; 2013 Oct; 5(19):9348-56. PubMed ID: 23955191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of polypropylene/clay nanocomposites for food packaging.
    Choi RN; Cheigh CI; Lee SY; Chung MS
    J Food Sci; 2011 Oct; 76(8):N62-7. PubMed ID: 22417600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell cellulose nanofibers for biocomposites - nanostructural effects in hydrated state.
    Prakobna K; Terenzi C; Zhou Q; Furó I; Berglund LA
    Carbohydr Polym; 2015 Jul; 125():92-102. PubMed ID: 25857964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physico chemical properties of aminated tamarind xyloglucan.
    Simi CK; Abraham TE
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):513-20. PubMed ID: 20817420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties.
    Ionita M; Pandele MA; Iovu H
    Carbohydr Polym; 2013 Apr; 94(1):339-44. PubMed ID: 23544547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticle functionalized artificial nacre: facile in situ growth of nanoparticles on montmorillonite nanosheets, self-assembly, and their multiple properties.
    Yao HB; Mao LB; Yan YX; Cong HP; Lei X; Yu SH
    ACS Nano; 2012 Sep; 6(9):8250-60. PubMed ID: 22909252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links.
    Podsiadlo P; Kaushik AK; Shim BS; Agarwal A; Tang Z; Waas AM; Arruda EM; Kotov NA
    J Phys Chem B; 2008 Nov; 112(46):14359-63. PubMed ID: 18590319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound-assisted pullulan/montmorillonite bionanocomposite coating with high oxygen barrier properties.
    Introzzi L; Blomfeldt TO; Trabattoni S; Tavazzi S; Santo N; Schiraldi A; Piergiovanni L; Farris S
    Langmuir; 2012 Jul; 28(30):11206-14. PubMed ID: 22765289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape memory starch-clay bionanocomposites.
    Coativy G; Gautier N; Pontoire B; Buléon A; Lourdin D; Leroy E
    Carbohydr Polym; 2015 Feb; 116():307-13. PubMed ID: 25458305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films.
    Kochumalayil JJ; Zhou Q; Kasai W; Berglund LA
    Carbohydr Polym; 2013 Apr; 93(2):466-72. PubMed ID: 23499084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructural effects on polymer and water dynamics in cellulose biocomposites: (2)h and (13)c NMR relaxometry.
    Terenzi C; Prakobna K; Berglund LA; Furó I
    Biomacromolecules; 2015 May; 16(5):1506-15. PubMed ID: 25853702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The xyloglucan-cellulose assembly at the atomic scale.
    Hanus J; Mazeau K
    Biopolymers; 2006 May; 82(1):59-73. PubMed ID: 16453275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the addition order and amylose content on mechanical, barrier and structural properties of films made with starch and montmorillonite.
    Romero-Bastida CA; Bello-Pérez LA; Velazquez G; Alvarez-Ramirez J
    Carbohydr Polym; 2015; 127():195-201. PubMed ID: 25965474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of clay concentration on morphology and properties of hydroxypropylmethylcellulose films.
    Mondal D; Bhowmick B; Mollick MM; Maity D; Mukhopadhyay A; Rana D; Chattopadhyay D
    Carbohydr Polym; 2013 Jul; 96(1):57-63. PubMed ID: 23688454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.