BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24083474)

  • 1. Heparan sulfate mediates trastuzumab effect in breast cancer cells.
    Suarez ER; Paredes-Gamero EJ; Del Giglio A; Tersariol IL; Nader HB; Pinhal MA
    BMC Cancer; 2013 Oct; 13():444. PubMed ID: 24083474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The HER2 amplicon includes several genes required for the growth and survival of HER2 positive breast cancer cells.
    Sahlberg KK; Hongisto V; Edgren H; Mäkelä R; Hellström K; Due EU; Moen Vollan HK; Sahlberg N; Wolf M; Børresen-Dale AL; Perälä M; Kallioniemi O
    Mol Oncol; 2013 Jun; 7(3):392-401. PubMed ID: 23253899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of resistance to trastuzumab and molecular sensitization via ADCC activation by exogenous expression of HER2-extracellular domain in human cancer cells.
    Yoshida R; Tazawa H; Hashimoto Y; Yano S; Onishi T; Sasaki T; Shirakawa Y; Kishimoto H; Uno F; Nishizaki M; Kagawa S; Fujiwara T
    Cancer Immunol Immunother; 2012 Nov; 61(11):1905-16. PubMed ID: 22465967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of human papillomavirus type 16 particles with heparan sulfate and syndecan-1 molecules in the keratinocyte extracellular matrix plays an active role in infection.
    Surviladze Z; Sterkand RT; Ozbun MA
    J Gen Virol; 2015 Aug; 96(8):2232-2241. PubMed ID: 26289843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell Membrane-associated heparan sulfate is a receptor for prototype foamy virus in human, monkey, and rodent cells.
    Nasimuzzaman M; Persons DA
    Mol Ther; 2012 Jun; 20(6):1158-66. PubMed ID: 22434139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management.
    Faria-Ramos I; Poças J; Marques C; Santos-Antunes J; Macedo G; Reis CA; Magalhães A
    Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33494442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Heparanase and Syndecan-1 in HSV-1 Release from Infected Cells.
    Sharma P; Kapoor D; Shukla D
    Viruses; 2022 Sep; 14(10):. PubMed ID: 36298711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ drug-receptor binding kinetics in single cells: a quantitative label-free study of anti-tumor drug resistance.
    Wang W; Yin L; Gonzalez-Malerva L; Wang S; Yu X; Eaton S; Zhang S; Chen HY; LaBaer J; Tao N
    Sci Rep; 2014 Oct; 4():6609. PubMed ID: 25312029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparanase-enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression.
    Rangarajan S; Richter JR; Richter RP; Bandari SK; Tripathi K; Vlodavsky I; Sanderson RD
    J Histochem Cytochem; 2020 Dec; 68(12):823-840. PubMed ID: 32623935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of human heparanase reveals insights into substrate recognition.
    Wu L; Viola CM; Brzozowski AM; Davies GJ
    Nat Struct Mol Biol; 2015 Dec; 22(12):1016-22. PubMed ID: 26575439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent chemoenzymatic synthesis and biological evaluation of a heparan sulfate proteoglycan syndecan-1 mimetic.
    Gao J; Xu Y; Liu J; Huang X
    Chem Commun (Camb); 2021 Apr; 57(27):3407-3410. PubMed ID: 33687395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heparan sulfate promotes TRAIL-induced tumor cell apoptosis.
    Luo Y; Hao H; Wang Z; Ong CY; Dutcher R; Xu Y; Liu J; Pedersen LC; Xu D
    Elife; 2024 Jan; 12():. PubMed ID: 38265424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in biotechnology for heparin and heparan sulfate analysis.
    Qiao M; Lin L; Xia K; Li J; Zhang X; Linhardt RJ
    Talanta; 2020 Nov; 219():121270. PubMed ID: 32887160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TFCP2 is a transcriptional regulator of heparan sulfate assembly and melanoma cell growth.
    Basu A; Champagne RN; Patel NG; Nicholson ED; Weiss RJ
    J Biol Chem; 2023 Jun; 299(6):104713. PubMed ID: 37061003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of heparanase is mediated by syndecan-1 cytoplasmic domain and involves syntenin and α-actinin.
    Shteingauz A; Ilan N; Vlodavsky I
    Cell Mol Life Sci; 2014 Nov; 71(22):4457-70. PubMed ID: 24788042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational synthesis of a heparan sulfate saccharide that promotes the activity of BMP2.
    Shaffer KJ; Smith RAA; Daines AM; Luo X; Lu X; Tan TC; Le BQ; Schwörer R; Hinkley SFR; Tyler PC; Nurcombe V; Cool SM
    Carbohydr Polym; 2024 Jun; 333():121979. PubMed ID: 38494232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent and dynamic interactions of cystatin C with heparan sulfate.
    Zhang X; Liu X; Su G; Li M; Liu J; Wang C; Xu D
    Commun Biol; 2021 Feb; 4(1):198. PubMed ID: 33580179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting the heparan sulfate-binding site of RAGE with monoclonal antibodies.
    Ong C; Li M; Xu D
    Glycobiology; 2024 Apr; 34(3):. PubMed ID: 38181393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Detection of BODIPY-, Biotin-, and
    Spijkers-Shaw S; Devlin R; Shields NJ; Feng X; Peck T; Lenihan-Geels G; Davis C; Young SL; La Flamme AC; Zubkova OV
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202316791. PubMed ID: 38308859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-molecule-induced clustering of heparan sulfate promotes cell adhesion.
    Takemoto N; Suehara T; Frisco HL; Sato S; Sezaki T; Kusamori K; Kawazoe Y; Park SM; Yamazoe S; Mizuhata Y; Inoue R; Miller GJ; Hansen SU; Jayson GC; Gardiner JM; Kanaya T; Tokitoh N; Ueda K; Takakura Y; Kioka N; Nishikawa M; Uesugi M
    J Am Chem Soc; 2013 Jul; 135(30):11032-9. PubMed ID: 23822587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.