BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24083613)

  • 1. Co-control of local air pollutants and CO2 in the Chinese iron and steel industry.
    Mao X; Zeng A; Hu T; Zhou J; Xing Y; Liu S
    Environ Sci Technol; 2013; 47(21):12002-10. PubMed ID: 24083613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative assessment of economic-incentive and command-and-control instruments for air pollution and CO2 control in China's iron and steel sector.
    Liu Z; Mao X; Tu J; Jaccard M
    J Environ Manage; 2014 Nov; 144():135-42. PubMed ID: 24945700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics.
    Wang K; Tian H; Hua S; Zhu C; Gao J; Xue Y; Hao J; Wang Y; Zhou J
    Sci Total Environ; 2016 Jul; 559():7-14. PubMed ID: 27054489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-carbon transition of iron and steel industry in China: carbon intensity, economic growth and policy intervention.
    Yu B; Li X; Qiao Y; Shi L
    J Environ Sci (China); 2015 Feb; 28():137-47. PubMed ID: 25662248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trends in air pollutant emissions from the sintering process of the iron and steel industry in the Fenwei Plain and surrounding regions in China, 2014-2017.
    Wang S; Liu J; Yi H; Tang X; Yu Q; Zhao S; Gao F; Zhou Y; Zhong T; Wang Y
    Chemosphere; 2022 Mar; 291(Pt 2):132917. PubMed ID: 34793850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimization model for regional air pollutants mitigation based on the economic structure adjustment and multiple measures: A case study in Urumqi city, China.
    Sun X; Li W; Xie Y; Huang G; Dong C; Yin J
    J Environ Manage; 2016 Nov; 182():59-69. PubMed ID: 27454097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unit-based emission inventory of SO
    Wang X; Lei Y; Yan L; Liu T; Zhang Q; He K
    Sci Total Environ; 2019 Aug; 676():18-30. PubMed ID: 31029897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study.
    Markandya A; Sampedro J; Smith SJ; Van Dingenen R; Pizarro-Irizar C; Arto I; González-Eguino M
    Lancet Planet Health; 2018 Mar; 2(3):e126-e133. PubMed ID: 29615227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cooperative reduction model for regional air pollution control in China that considers adverse health effects and pollutant reduction costs.
    Xie Y; Zhao L; Xue J; Hu Q; Xu X; Wang H
    Sci Total Environ; 2016 Dec; 573():458-469. PubMed ID: 27572538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Baosteel emission control significantly benefited air quality in Shanghai.
    Han T; Yao L; Liu L; Xian A; Chen H; Dong W; Chen J
    J Environ Sci (China); 2018 Sep; 71():127-135. PubMed ID: 30195671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of abatement potentials and costs of air pollution emissions in China.
    Zhang F; Xing J; Zhou Y; Wang S; Zhao B; Zheng H; Zhao X; Chang H; Jang C; Zhu Y; Hao J
    J Environ Manage; 2020 Apr; 260():110069. PubMed ID: 32090813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factor decomposition and decoupling analysis of air pollutant emissions in China's iron and steel industry.
    Wang X; Gao X; Shao Q; Wei Y
    Environ Sci Pollut Res Int; 2020 May; 27(13):15267-15277. PubMed ID: 32077027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cost-effective approaches for reducing carbon and air pollution emissions in the power industry in China.
    Jiang P; Khishgee S; Alimujiang A; Dong H
    J Environ Manage; 2020 Jun; 264():110452. PubMed ID: 32217327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-process and multi-pollutant control technology for ultra-low emissions in the iron and steel industry.
    Zhu T; Wang X; Yu Y; Li C; Yao Q; Li Y
    J Environ Sci (China); 2023 Jan; 123():83-95. PubMed ID: 36522016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the spatial and sectoral characteristics of a high-resolution emission inventory of CO
    Gao Y; Zhang L; Huang A; Kou W; Bo X; Cai B; Qu J
    Sci Total Environ; 2022 Nov; 847():157623. PubMed ID: 35901902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollution Emissions, Environmental Policy, and Marginal Abatement Costs.
    He LY; Ou JJ
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29206170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How well have China's recent five-year plans been implemented for energy conservation and air pollution control?
    Mao X; Zhou J; Corsetti G
    Environ Sci Technol; 2014 Sep; 48(17):10036-44. PubMed ID: 25111055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of current emission abatement strategies on air quality improvement in China: A case study of Baotou, a typical industrial city in Inner Mongolia.
    Qiu X; Duan L; Cai S; Yu Q; Wang S; Chai F; Gao J; Li Y; Xu Z
    J Environ Sci (China); 2017 Jul; 57():383-390. PubMed ID: 28647259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of marginal abatement costs of CO
    Duan F; Wang Y; Wang Y; Zhao H
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):24445-24468. PubMed ID: 29909535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of multipollutant air quality management strategies: A case study for five cities in the United States.
    Liao KJ; Hou X
    J Air Waste Manag Assoc; 2015 Jun; 65(6):732-42. PubMed ID: 25976486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.