BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24083701)

  • 21. Identification of a 5‑microRNA signature and hub miRNA‑mRNA interactions associated with pancreatic cancer.
    Ma X; Tao R; Li L; Chen H; Liu Z; Bai J; Shuai X; Wu C; Tao K
    Oncol Rep; 2019 Jan; 41(1):292-300. PubMed ID: 30365134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Galectin-3 expression is associated with bladder cancer progression and clinical outcome.
    Canesin G; Gonzalez-Peramato P; Palou J; Urrutia M; Cordón-Cardo C; Sánchez-Carbayo M
    Tumour Biol; 2010 Aug; 31(4):277-85. PubMed ID: 20401558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of hub genes and analysis of prognostic values in pancreatic ductal adenocarcinoma by integrated bioinformatics methods.
    Lu Y; Li C; Chen H; Zhong W
    Mol Biol Rep; 2018 Dec; 45(6):1799-1807. PubMed ID: 30173393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Screening candidate genes associated with bladder cancer using DNA microarray.
    Xu A; Wang C; Sun S
    Mol Med Rep; 2014 Dec; 10(6):3087-91. PubMed ID: 25323786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CpG hypermethylation of collagen type I alpha 2 contributes to proliferation and migration activity of human bladder cancer.
    Mori K; Enokida H; Kagara I; Kawakami K; Chiyomaru T; Tatarano S; Kawahara K; Nishiyama K; Seki N; Nakagawa M
    Int J Oncol; 2009 Jun; 34(6):1593-602. PubMed ID: 19424577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis.
    Xu Z; Zhou Y; Cao Y; Dinh TL; Wan J; Zhao M
    Med Oncol; 2016 Nov; 33(11):130. PubMed ID: 27757782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Four novel biomarkers for bladder cancer identified by weighted gene coexpression network analysis.
    Yan X; Guo ZX; Liu XP; Feng YJ; Zhao YJ; Liu TZ; Li S
    J Cell Physiol; 2019 Aug; 234(10):19073-19087. PubMed ID: 30927274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive gene expression analysis after ERH gene knockdown in human bladder cancer T24 cell lines.
    Pang K; Hao L; Shi Z; Chen B; Pang H; Dong Y; Zhang Z; Dong B; Han C
    Gene; 2020 May; 738():144475. PubMed ID: 32081697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern of somatostatin receptors expression in normal and bladder cancer tissue samples.
    Karavitakis M; Msaouel P; Michalopoulos V; Koutsilieris M
    Anticancer Res; 2014 Jun; 34(6):2937-42. PubMed ID: 24922657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive analysis of differentially expressed genes associated with PLK1 in bladder cancer.
    Zhang Z; Zhang G; Gao Z; Li S; Li Z; Bi J; Liu X; Li Z; Kong C
    BMC Cancer; 2017 Dec; 17(1):861. PubMed ID: 29246203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis.
    Li T; Gao X; Han L; Yu J; Li H
    World J Surg Oncol; 2018 Jun; 16(1):114. PubMed ID: 29921304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the FGFR3-related oncogenic mechanism in bladder cancer using bioinformatics strategy.
    Cao W; Ma E; Zhou L; Yuan T; Zhang C
    World J Surg Oncol; 2017 Mar; 15(1):66. PubMed ID: 28320388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Key Genes and Pathways in Pancreatic Cancer Gene Expression Profile by Integrative Analysis.
    Lu W; Li N; Liao F
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31412643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.
    Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G
    Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease.
    Liu J; Jing L; Tu X
    BMC Cardiovasc Disord; 2016 Mar; 16():54. PubMed ID: 26944061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of biomarkers associated with progression and prognosis in bladder cancer via co-expression analysis.
    Shi S; Tian B
    Cancer Biomark; 2019; 24(2):183-193. PubMed ID: 30689556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of hub genes with diagnostic values in pancreatic cancer by bioinformatics analyses and supervised learning methods.
    Li C; Zeng X; Yu H; Gu Y; Zhang W
    World J Surg Oncol; 2018 Nov; 16(1):223. PubMed ID: 30428899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of Decision Trees Based on Gene Expression Omnibus Data to Classify Bladder Cancer and Its Subtypes.
    Zhou JQ; Kang XL; Xu CJ; Liu S; Wang Y
    Med Sci Monit; 2021 Mar; 27():e929394. PubMed ID: 33753712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein-protein interaction network and significant gene analysis of osteoporosis.
    Wu XM; Ma X; Tang C; Xie KN; Liu J; Guo W; Yan YL; Shen GH; Luo EP
    Genet Mol Res; 2013 Oct; 12(4):4751-9. PubMed ID: 24222250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Network-based co-expression analysis for exploring the potential diagnostic biomarkers of metastatic melanoma.
    Wang LX; Li Y; Chen GZ
    PLoS One; 2018; 13(1):e0190447. PubMed ID: 29377892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.