These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 24084026)
1. Mechanistic implications of persulfenate and persulfide binding in the active site of cysteine dioxygenase. Souness RJ; Kleffmann T; Tchesnokov EP; Wilbanks SM; Jameson GB; Jameson GN Biochemistry; 2013 Oct; 52(43):7606-17. PubMed ID: 24084026 [TBL] [Abstract][Full Text] [Related]
2. Cysteine dioxygenase structures from pH4 to 9: consistent cys-persulfenate formation at intermediate pH and a Cys-bound enzyme at higher pH. Driggers CM; Cooley RB; Sankaran B; Hirschberger LL; Stipanuk MH; Karplus PA J Mol Biol; 2013 Sep; 425(17):3121-36. PubMed ID: 23747973 [TBL] [Abstract][Full Text] [Related]
4. Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe site influence the O₂ coupling efficiency in mouse cysteine dioxygenase. Li W; Blaesi EJ; Pecore MD; Crowell JK; Pierce BS Biochemistry; 2013 Dec; 52(51):9104-19. PubMed ID: 24279989 [TBL] [Abstract][Full Text] [Related]
5. Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes. Kumar D; Thiel W; de Visser SP J Am Chem Soc; 2011 Mar; 133(11):3869-82. PubMed ID: 21344861 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of cysteine oxygenation by cysteine dioxygenase enzymes. Aluri S; de Visser SP J Am Chem Soc; 2007 Dec; 129(48):14846-7. PubMed ID: 17994747 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from Cuevasanta E; Reyes AM; Zeida A; Mastrogiovanni M; De Armas MI; Radi R; Alvarez B; Trujillo M J Biol Chem; 2019 Sep; 294(37):13593-13605. PubMed ID: 31311857 [TBL] [Abstract][Full Text] [Related]
8. The cysteine dioxygenase homologue from Pseudomonas aeruginosa is a 3-mercaptopropionate dioxygenase. Tchesnokov EP; Fellner M; Siakkou E; Kleffmann T; Martin LW; Aloi S; Lamont IL; Wilbanks SM; Jameson GN J Biol Chem; 2015 Oct; 290(40):24424-37. PubMed ID: 26272617 [TBL] [Abstract][Full Text] [Related]
9. A strongly bound high-spin iron(II) coordinates cysteine and homocysteine in cysteine dioxygenase. Tchesnokov EP; Wilbanks SM; Jameson GN Biochemistry; 2012 Jan; 51(1):257-64. PubMed ID: 22122511 [TBL] [Abstract][Full Text] [Related]
10. Structure-Based Insights into the Role of the Cys-Tyr Crosslink and Inhibitor Recognition by Mammalian Cysteine Dioxygenase. Driggers CM; Kean KM; Hirschberger LL; Cooley RB; Stipanuk MH; Karplus PA J Mol Biol; 2016 Oct; 428(20):3999-4012. PubMed ID: 27477048 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications. Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574 [TBL] [Abstract][Full Text] [Related]
12. Influence of cysteine 164 on active site structure in rat cysteine dioxygenase. Fellner M; Siakkou E; Faponle AS; Tchesnokov EP; de Visser SP; Wilbanks SM; Jameson GN J Biol Inorg Chem; 2016 Jul; 21(4):501-10. PubMed ID: 27193596 [TBL] [Abstract][Full Text] [Related]
13. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs. Driggers CM; Hartman SJ; Karplus PA Protein Sci; 2015 Jan; 24(1):154-61. PubMed ID: 25307852 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic Regulation and Biological Functions of Reactive Cysteine Persulfides and Polysulfides. Sawa T; Motohashi H; Ihara H; Akaike T Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32867265 [TBL] [Abstract][Full Text] [Related]
15. Probing the Cys-Tyr Cofactor Biogenesis in Cysteine Dioxygenase by the Genetic Incorporation of Fluorotyrosine. Li J; Koto T; Davis I; Liu A Biochemistry; 2019 Apr; 58(17):2218-2227. PubMed ID: 30946568 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of mammalian cysteine dioxygenase. A novel mononuclear iron center for cysteine thiol oxidation. Simmons CR; Liu Q; Huang Q; Hao Q; Begley TP; Karplus PA; Stipanuk MH J Biol Chem; 2006 Jul; 281(27):18723-33. PubMed ID: 16611640 [TBL] [Abstract][Full Text] [Related]
17. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases? de Visser SP; Straganz GD J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for persulfide-sensing specificity in a transcriptional regulator. Capdevila DA; Walsh BJC; Zhang Y; Dietrich C; Gonzalez-Gutierrez G; Giedroc DP Nat Chem Biol; 2021 Jan; 17(1):65-70. PubMed ID: 33106663 [TBL] [Abstract][Full Text] [Related]
19. Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis. Lehrke M; Rump S; Heidenreich T; Wissing J; Mendel RR; Bittner F Biochem J; 2012 Feb; 441(3):823-32. PubMed ID: 22004669 [TBL] [Abstract][Full Text] [Related]
20. Protein polysulfidation-dependent persulfide dioxygenase activity of ethylmalonic encephalopathy protein 1. Jung M; Kasamatsu S; Matsunaga T; Akashi S; Ono K; Nishimura A; Morita M; Abdul Hamid H; Fujii S; Kitamura H; Sawa T; Ida T; Motohashi H; Akaike T Biochem Biophys Res Commun; 2016 Nov; 480(2):180-186. PubMed ID: 27742479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]