These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Micro-optical fiber probe for use in an intravascular Raman endoscope. Komachi Y; Sato H; Aizawa K; Tashiro H Appl Opt; 2005 Aug; 44(22):4722-32. PubMed ID: 16075885 [TBL] [Abstract][Full Text] [Related]
5. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy. Qi D; Berger AJ Appl Opt; 2007 Apr; 46(10):1726-34. PubMed ID: 17356615 [TBL] [Abstract][Full Text] [Related]
6. Quantitative concentration measurements of creatinine dissolved in water and urine using Raman spectroscopy and a liquid core optical fiber. Qi D; Berger AJ J Biomed Opt; 2005; 10(3):031115. PubMed ID: 16229640 [TBL] [Abstract][Full Text] [Related]
9. Correction method for absorption-dependent signal enhancement by a liquid-core optical fiber. Qi D; Berger AJ Appl Opt; 2006 Jan; 45(3):489-94. PubMed ID: 16463733 [TBL] [Abstract][Full Text] [Related]
10. Raman probes based on optically-poled double-clad fiber and coupler. Brunetti AC; Margulis W; Rottwitt K Opt Express; 2012 Dec; 20(27):28563-72. PubMed ID: 23263094 [TBL] [Abstract][Full Text] [Related]
11. SERS and OWGS detection of dynamic trapping molecular TNT based on a functional self-assembly Au monolayer film. Zhou X; Liu H; Yang L; Liu J Analyst; 2013 Mar; 138(6):1858-64. PubMed ID: 23377277 [TBL] [Abstract][Full Text] [Related]
12. The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies. Kostovski G; Stoddart PR; Mitchell A Adv Mater; 2014 Jun; 26(23):3798-820. PubMed ID: 24599822 [TBL] [Abstract][Full Text] [Related]
13. Increased sensitivity in fiber-based spectroscopy using carbon-coated fiber. Sudirman A; Norin L; Margulis W Opt Express; 2012 Dec; 20(27):28049-55. PubMed ID: 23263040 [TBL] [Abstract][Full Text] [Related]
14. Rapid, on-site identification of explosives in nanoliter droplets using a UV reflected fiber optic sensor. Li X; Li Q; Zhou H; Hao H; Wang T; Zhao S; Lu Y; Huang G Anal Chim Acta; 2012 Nov; 751():112-8. PubMed ID: 23084059 [TBL] [Abstract][Full Text] [Related]
15. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines. Sheaff CN; Eastwood D; Wai CM Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719 [TBL] [Abstract][Full Text] [Related]
16. Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives. Liu X; Zhao L; Shen H; Xu H; Lu L Talanta; 2011 Jan; 83(3):1023-9. PubMed ID: 21147353 [TBL] [Abstract][Full Text] [Related]
18. In-situ detection of single particles of explosive on clothing with confocal Raman microscopy. Ali EM; Edwards HG; Scowen IJ Talanta; 2009 May; 78(3):1201-3. PubMed ID: 19269494 [TBL] [Abstract][Full Text] [Related]
19. High efficiency supercontinuum generation using ultra-long Raman fiber cavities. El-Taher AE; Ania-Castañón JD; Karalekas V; Harper P Opt Express; 2009 Sep; 17(20):17909-15. PubMed ID: 19907579 [TBL] [Abstract][Full Text] [Related]
20. Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe. Oztekin EK; Burton DJ; Hahn DW Appl Spectrosc; 2016 Apr; 70(4):676-87. PubMed ID: 26865581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]