These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24084120)

  • 1. Application of a coaxial-like sensor for impedance spectroscopy measurements of selected low-conductivity liquids.
    Szypłowska A; Nakonieczna A; Wilczek A; Paszkowski B; Solecki G; Skierucha W
    Sensors (Basel); 2013 Sep; 13(10):13301-17. PubMed ID: 24084120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An artificial taste sensor based on conducting polymers.
    Riul Júnior A; Malmegrim RR; Fonseca FJ; Mattoso LH
    Biosens Bioelectron; 2003 Oct; 18(11):1365-9. PubMed ID: 12896837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of soil pore water salinity using an FDR sensor working at various frequencies up to 500 MHz.
    Wilczek A; Szypłowska A; Skierucha W; Cieśla J; Pichler V; Janik G
    Sensors (Basel); 2012; 12(8):10890-905. PubMed ID: 23112636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging.
    Jilnai MT; Wen WP; Cheong LY; ur Rehman MZ
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26805828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabricated thin film impedance sensor & AC impedance measurements.
    Yu J; Liu CC
    Sensors (Basel); 2010; 10(6):5845-58. PubMed ID: 22219690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A composite sensor array impedentiometric electronic tongue Part I. Characterization.
    Pioggia G; Di Francesco F; Marchetti A; Ferro M; Ahluwalia A
    Biosens Bioelectron; 2007 May; 22(11):2618-23. PubMed ID: 17161944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An introductory study using impedance spectroscopy technique with polarizable microelectrode for amino acids characterization.
    Chin KB; Chi I; Pasalic J; Huang CK; Barge LM
    Rev Sci Instrum; 2018 Apr; 89(4):045108. PubMed ID: 29716330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid monitoring of mono- and disaccharides in drinks, foodstuffs and foodstuff additives by capillary electrophoresis with contactless conductivity detection.
    Tůma P; Málková K; Samcová E; Stulík K
    Anal Chim Acta; 2011 Jul; 698(1-2):1-5. PubMed ID: 21645652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual resonant frequencies effects on an induction-based oil palm fruit sensor.
    Harun NH; Misron N; Mohd Sidek R; Aris I; Wakiwaka H; Tashiro K
    Sensors (Basel); 2014 Nov; 14(11):21923-40. PubMed ID: 25414970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of electrochemical impedance spectroscopy: A phase behavior study of babassu biodiesel-based microemulsions.
    Pereira TC; Conceição CAF; Khan A; Fernandes RMT; Ferreira MS; Marques EP; Marques ALB
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Nov; 168():60-64. PubMed ID: 27276278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A composite sensor array impedentiometric electronic tongue Part II. Discrimination of basic tastes.
    Pioggia G; Di Francesco F; Marchetti A; Ferro M; Leardi R; Ahluwalia A
    Biosens Bioelectron; 2007 May; 22(11):2624-8. PubMed ID: 17169548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel photoelectrochemical sensor based on tailoring printable mesoscopic chip for fast and real-time phospholipids oxidation detection.
    Li P; Zhang M; Sun C; Wang D; Xu W; Zou Y; Ma J; Zhu Y
    Food Chem; 2020 Jun; 314():126173. PubMed ID: 31954942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics.
    Chen Q; Wang D; Cai G; Xiong Y; Li Y; Wang M; Huo H; Lin J
    Biosens Bioelectron; 2016 Dec; 86():770-776. PubMed ID: 27476059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of DNA concentration on the interfacial electrode impedance.
    Cho S; Oh Y; Ahn SM
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7291-4. PubMed ID: 24245245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison and optimization of three commercial methods with an LC-MS/MS method for the determination of sulfites in food and beverages.
    Carlos KS; Treblin M; de Jager LS
    Food Chem; 2019 Jul; 286():537-540. PubMed ID: 30827644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An oil fraction neural sensor developed using electrical capacitance tomography sensor data.
    Zainal-Mokhtar K; Mohamad-Saleh J
    Sensors (Basel); 2013 Aug; 13(9):11385-406. PubMed ID: 24064598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New terahertz dielectric spectroscopy for the study of aqueous solutions.
    George DK; Charkhesht A; Vinh NQ
    Rev Sci Instrum; 2015 Dec; 86(12):123105. PubMed ID: 26724004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel broadband impedance method for detection of cell-derived microparticles.
    Lvovich V; Srikanthan S; Silverstein RL
    Biosens Bioelectron; 2010 Oct; 26(2):444-51. PubMed ID: 20729061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel impedance cell for low conductive liquids: determination of bulk and interface contributions.
    Becchi M; Callegaro L; Durbiano F; D'Elia V; Strigazzi A
    Rev Sci Instrum; 2007 Nov; 78(11):113902. PubMed ID: 18052483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric properties of glucose in bulk aqueous solutions: Influence of electrode polarization and modeling.
    Yoon G
    Biosens Bioelectron; 2011 Jan; 26(5):2347-53. PubMed ID: 21036027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.