These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62 related articles for article (PubMed ID: 24084318)
1. Opioid receptor types involved in the development of nicotine physical dependence in an invertebrate (Planaria) model. Raffa RB; Baron S; Bhandal JS; Brown T; Song K; Tallarida CS; Rawls SM Pharmacol Biochem Behav; 2013 Nov; 112():9-14. PubMed ID: 24084318 [TBL] [Abstract][Full Text] [Related]
2. Effects of naloxone and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 and the protein kinase inhibitors H7 and H8 on acute morphine dependence and antinociceptive tolerance in mice. Bilsky EJ; Bernstein RN; Wang Z; Sadée W; Porreca F J Pharmacol Exp Ther; 1996 Apr; 277(1):484-90. PubMed ID: 8613958 [TBL] [Abstract][Full Text] [Related]
3. The kappa-opioid receptor antagonist nor-BNI inhibits cocaine and amphetamine, but not cannabinoid (WIN 52212-2), abstinence-induced withdrawal in planarians: an instance of 'pharmacologic congruence'. Raffa RB; Stagliano GW; Ross G; Powell JA; Phillips AG; Ding Z; Rawls SM Brain Res; 2008 Feb; 1193():51-6. PubMed ID: 18178175 [TBL] [Abstract][Full Text] [Related]
6. Precipitation of morphine withdrawal syndrome in rats by administration of mu-, delta- and kappa-selective opioid antagonists. Maldonado R; Negus S; Koob GF Neuropharmacology; 1992 Dec; 31(12):1231-41. PubMed ID: 1335131 [TBL] [Abstract][Full Text] [Related]
7. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens. Hirose N; Murakawa K; Takada K; Oi Y; Suzuki T; Nagase H; Cools AR; Koshikawa N Neuroscience; 2005; 135(1):213-25. PubMed ID: 16111831 [TBL] [Abstract][Full Text] [Related]
8. Effect of nonselective and selective opioid receptors antagonists on antinociceptive action of acetaminophen [part III]. Bujalska M Pol J Pharmacol; 2004; 56(5):539-45. PubMed ID: 15591641 [TBL] [Abstract][Full Text] [Related]
9. Dual effects of DAMGO [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin and CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) on adenylyl cyclase activity: implications for mu-opioid receptor Gs coupling. Szücs M; Boda K; Gintzler AR J Pharmacol Exp Ther; 2004 Jul; 310(1):256-62. PubMed ID: 14996951 [TBL] [Abstract][Full Text] [Related]
10. Design of high affinity cyclic pentapeptide ligands for kappa-opioid receptors. Przydzial MJ; Pogozheva ID; Ho JC; Bosse KE; Sawyer E; Traynor JR; Mosberg HI J Pept Res; 2005 Nov; 66(5):255-62. PubMed ID: 16218993 [TBL] [Abstract][Full Text] [Related]
11. Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. Zatta AJ; Kin H; Yoshishige D; Jiang R; Wang N; Reeves JG; Mykytenko J; Guyton RA; Zhao ZQ; Caffrey JL; Vinten-Johansen J Am J Physiol Heart Circ Physiol; 2008 Mar; 294(3):H1444-51. PubMed ID: 18203844 [TBL] [Abstract][Full Text] [Related]
12. Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. Stein C; Millan MJ; Shippenberg TS; Peter K; Herz A J Pharmacol Exp Ther; 1989 Mar; 248(3):1269-75. PubMed ID: 2539460 [TBL] [Abstract][Full Text] [Related]
13. Effects of the neoclerodane Hardwickiic acid on the presynaptic opioid receptors which modulate noradrenaline and dopamine release in mouse central nervous system. Pittaluga A; Olivero G; Di Prisco S; Merega E; Bisio A; Romussi G; Grilli M; Marchi M Neurochem Int; 2013 Mar; 62(4):354-9. PubMed ID: 23357481 [TBL] [Abstract][Full Text] [Related]
14. SNF9007: a novel analgesic that acts simultaneously at delta 1, delta 2 and mu opioid receptors. Williams CL; Rosenfeld GC; Dafny N; Fang SN; Hruby VJ; Bowden G; Cullinan CA; Burks TF J Pharmacol Exp Ther; 1994 May; 269(2):750-5. PubMed ID: 8182541 [TBL] [Abstract][Full Text] [Related]
15. Potency differences for D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 as an antagonist of peptide and alkaloid micro-agonists in an antinociception assay. Sterious SN; Walker EA J Pharmacol Exp Ther; 2003 Jan; 304(1):301-9. PubMed ID: 12490605 [TBL] [Abstract][Full Text] [Related]
16. Differential regulation of mu and delta opiate receptors by morphine, selective agonists and antagonists and differentiating agents in SH-SY5Y human neuroblastoma cells. Zadina JE; Harrison LM; Ge LJ; Kastin AJ; Chang SL J Pharmacol Exp Ther; 1994 Sep; 270(3):1086-96. PubMed ID: 7932156 [TBL] [Abstract][Full Text] [Related]
17. Effect of the selective kappa-opioid receptor antagonist JDTic on nicotine antinociception, reward, and withdrawal in the mouse. Jackson KJ; Carroll FI; Negus SS; Damaj MI Psychopharmacology (Berl); 2010 Jun; 210(2):285-94. PubMed ID: 20232057 [TBL] [Abstract][Full Text] [Related]
18. Cocaine and kappa-opioid withdrawal in Planaria blocked by D-, but not L-, glucose. Umeda S; Stagliano GW; Raffa RB Brain Res; 2004 Aug; 1018(2):181-5. PubMed ID: 15276876 [TBL] [Abstract][Full Text] [Related]
19. Precipitation of spinally mediated withdrawal signs by intrathecal administration of naloxone and the mu-receptor antagonist CTP in morphine-dependent mice. Shook J; Kazmierski W; Hruby V; Burks T NIDA Res Monogr; 1988; 81():143-8. PubMed ID: 2900467 [TBL] [Abstract][Full Text] [Related]
20. Effect of mu and kappa opioids on injury-induced microglial accumulation in leech CNS: involvement of the nitric oxide pathway. Yahyavi-Firouz-Abadi N; Tahsili-Fahadan P; Ostad SN Neuroscience; 2007 Feb; 144(3):1075-86. PubMed ID: 17169497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]