These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24084491)

  • 1. Culturing and maintaining Clostridium difficile in an anaerobic environment.
    Edwards AN; Suárez JM; McBride SM
    J Vis Exp; 2013 Sep; (79):e50787. PubMed ID: 24084491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convenient Protocol for Production and Purification of
    Weldy M; Evert C; Dosa PI; Khoruts A; Sadowsky MJ
    STAR Protoc; 2020 Sep; 1(2):100071. PubMed ID: 33111107
    [No Abstract]   [Full Text] [Related]  

  • 3. How the Anaerobic Enteropathogen
    Kint N; Alves Feliciano C; Martins MC; Morvan C; Fernandes SF; Folgosa F; Dupuy B; Texeira M; Martin-Verstraete I
    mBio; 2020 Sep; 11(5):. PubMed ID: 32900801
    [No Abstract]   [Full Text] [Related]  

  • 4. Initiation of sporulation in Clostridium difficile: a twist on the classic model.
    Edwards AN; McBride SM
    FEMS Microbiol Lett; 2014 Sep; 358(2):110-8. PubMed ID: 24910370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolating and Purifying Clostridium difficile Spores.
    Edwards AN; McBride SM
    Methods Mol Biol; 2016; 1476():117-28. PubMed ID: 27507337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen tolerance in anaerobic pathogenic bacteria.
    Holý O; Chmelař D
    Folia Microbiol (Praha); 2012 Sep; 57(5):443-6. PubMed ID: 22573259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducing and Quantifying Clostridium difficile Spore Formation.
    Shen A; Fimlaid KA; Pishdadian K
    Methods Mol Biol; 2016; 1476():129-42. PubMed ID: 27507338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic reactions of Clostridium difficile in aerobic and anaerobic environments with the RapID-ANA II identification system.
    Peiffer S; Cox M
    J Clin Microbiol; 1993 Feb; 31(2):279-82. PubMed ID: 8432813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progesterone analogs influence germination of Clostridium sordellii and Clostridium difficile spores in vitro.
    Liggins M; Ramirez N; Magnuson N; Abel-Santos E
    J Bacteriol; 2011 Jun; 193(11):2776-83. PubMed ID: 21478359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic Evaluation of Parameters Important for Production of Native Toxin A and Toxin B from
    Aminzadeh A; Jørgensen R
    Toxins (Basel); 2021 Mar; 13(4):. PubMed ID: 33801738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel one-step method for detection and isolation of active-toxin-producing Clostridium difficile strains directly from stool samples.
    Darkoh C; Dupont HL; Kaplan HB
    J Clin Microbiol; 2011 Dec; 49(12):4219-24. PubMed ID: 21976761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the chromogenic agar chromID C. difficile.
    Eckert C; Burghoffer B; Lalande V; Barbut F
    J Clin Microbiol; 2013 Mar; 51(3):1002-4. PubMed ID: 23269743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of a non-sporulating secondary phenotype in Clostridium (Clostridioides) difficile ribotype 078 isolated from humans and animals.
    Connor MC; McGrath JW; McMullan G; Marks N; Guelbenzu M; Fairley DJ
    Sci Rep; 2019 Sep; 9(1):13722. PubMed ID: 31548637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clostridium difficile is an autotrophic bacterial pathogen.
    Köpke M; Straub M; Dürre P
    PLoS One; 2013; 8(4):e62157. PubMed ID: 23626782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive and selective culture medium for detection of environmental Clostridium difficile isolates without requirement for anaerobic culture conditions.
    Cadnum JL; Hurless KN; Deshpande A; Nerandzic MM; Kundrapu S; Donskey CJ
    J Clin Microbiol; 2014 Sep; 52(9):3259-63. PubMed ID: 24958803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly.
    Barra-Carrasco J; Olguín-Araneda V; Plaza-Garrido A; Miranda-Cárdenas C; Cofré-Araneda G; Pizarro-Guajardo M; Sarker MR; Paredes-Sabja D
    J Bacteriol; 2013 Sep; 195(17):3863-75. PubMed ID: 23794627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Clostridioides difficile Cysteine-Rich Exosporium Morphogenetic Protein, CdeC, Exhibits Self-Assembly Properties That Lead to Organized Inclusion Bodies in Escherichia coli.
    Romero-Rodríguez A; Troncoso-Cotal S; Guerrero-Araya E; Paredes-Sabja D
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33208520
    [No Abstract]   [Full Text] [Related]  

  • 18. Kinetic evidence for the presence of putative germination receptors in Clostridium difficile spores.
    Ramirez N; Liggins M; Abel-Santos E
    J Bacteriol; 2010 Aug; 192(16):4215-22. PubMed ID: 20562307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drivers of Clostridioides difficile hypervirulent ribotype 027 spore germination, vegetative cell growth and toxin production in vitro.
    Yuille S; Mackay WG; Morrison DJ; Tedford MC
    Clin Microbiol Infect; 2020 Jul; 26(7):941.e1-941.e7. PubMed ID: 31715298
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Coullon H; Rifflet A; Wheeler R; Janoir C; Boneca IG; Candela T
    J Biol Chem; 2018 Nov; 293(47):18040-18054. PubMed ID: 30266804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.