BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 24084585)

  • 21. Elucidating nitric oxide synthase domain interactions by molecular dynamics.
    Hollingsworth SA; Holden JK; Li H; Poulos TL
    Protein Sci; 2016 Feb; 25(2):374-82. PubMed ID: 26448477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of a Conserved Tyrosine Residue in the FMN-Heme Interdomain Electron Transfer in Inducible Nitric Oxide Synthase.
    Chen L; Zheng H; Li W; Li W; Miao Y; Feng C
    J Phys Chem A; 2016 Oct; 120(39):7610-7616. PubMed ID: 27633182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human neuronal nitric-oxide synthase and inducible nitric-oxide synthase flavin domains.
    Guan ZW; Kamatani D; Kimura S; Iyanagi T
    J Biol Chem; 2003 Aug; 278(33):30859-68. PubMed ID: 12777376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of solution viscosity on intraprotein electron transfer between the FMN and heme domains in inducible nitric oxide synthase.
    Li W; Fan W; Elmore BO; Feng C
    FEBS Lett; 2011 Aug; 585(16):2622-6. PubMed ID: 21803041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intra- and inter-molecular effects of a conserved arginine residue of neuronal and inducible nitric oxide synthases on FMN and calmodulin binding.
    Panda SP; Polusani SR; Kellogg DL; Venkatakrishnan P; Roman MG; Demeler B; Masters BS; Roman LJ
    Arch Biochem Biophys; 2013 May; 533(1-2):88-94. PubMed ID: 23507581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interdomain Interactions Modulate the Active Site Dynamics of Human Inducible Nitric Oxide Synthase.
    Tumbic GW; Li J; Jiang T; Hossan MY; Feng C; Thielges MC
    J Phys Chem B; 2022 Sep; 126(36):6811-6819. PubMed ID: 36056879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential calmodulin-modulatory and electron transfer properties of neuronal nitric oxide synthase mu compared to the alpha variant.
    Panda SP; Li W; Venkatakrishnan P; Chen L; Astashkin AV; Masters BS; Feng C; Roman LJ
    FEBS Lett; 2013 Dec; 587(24):3973-8. PubMed ID: 24211446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FMN fluorescence in inducible NOS constructs reveals a series of conformational states involved in the reductase catalytic cycle.
    Ghosh DK; Ray K; Rogers AJ; Nahm NJ; Salerno JC
    FEBS J; 2012 Apr; 279(7):1306-17. PubMed ID: 22325715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase.
    Xia C; Misra I; Iyanagi T; Kim JJ
    J Biol Chem; 2009 Oct; 284(44):30708-17. PubMed ID: 19737939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A docked state conformational dynamics model to explain the ionic strength dependence of FMN - heme electron transfer in nitric oxide synthase.
    Astashkin AV; Li J; Zheng H; Miao Y; Feng C
    J Inorg Biochem; 2018 Jul; 184():146-155. PubMed ID: 29751215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat shock protein 90 enhances the electron transfer between the FMN and heme cofactors in neuronal nitric oxide synthase.
    Zheng H; Li J; Feng C
    FEBS Lett; 2020 Sep; 594(17):2904-2913. PubMed ID: 32573772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of electron transfer and catalysis in neuronal nitric-oxide synthase (nNOS) by a hinge connecting its FMN and FAD-NADPH domains.
    Haque MM; Fadlalla MA; Aulak KS; Ghosh A; Durra D; Stuehr DJ
    J Biol Chem; 2012 Aug; 287(36):30105-16. PubMed ID: 22722929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences.
    Roman LJ; McLain J; Masters BS
    J Biol Chem; 2003 Jul; 278(28):25700-7. PubMed ID: 12730215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A bridging interaction allows calmodulin to activate NO synthase through a bi-modal mechanism.
    Tejero J; Haque MM; Durra D; Stuehr DJ
    J Biol Chem; 2010 Aug; 285(34):25941-9. PubMed ID: 20529840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparing the temperature dependence of FMN to heme electron transfer in full length and truncated inducible nitric oxide synthase proteins.
    Li W; Chen L; Fan W; Feng C
    FEBS Lett; 2012 Jan; 586(2):159-62. PubMed ID: 22198200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The C termini of constitutive nitric-oxide synthases control electron flow through the flavin and heme domains and affect modulation by calmodulin.
    Roman LJ; Martásek P; Miller RT; Harris DE; de La Garza MA; Shea TM; Kim JJ; Masters BS
    J Biol Chem; 2000 Sep; 275(38):29225-32. PubMed ID: 10871625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface charges and regulation of FMN to heme electron transfer in nitric-oxide synthase.
    Tejero J; Hannibal L; Mustovich A; Stuehr DJ
    J Biol Chem; 2010 Aug; 285(35):27232-27240. PubMed ID: 20592038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Macromolecular Crowding on the FMN-Heme Intraprotein Electron Transfer in Inducible NO Synthase.
    Li J; Zheng H; Feng C
    Biochemistry; 2019 Jul; 58(28):3087-3096. PubMed ID: 31251033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deletion of the autoregulatory insert modulates intraprotein electron transfer in rat neuronal nitric oxide synthase.
    Feng C; Roman LJ; Hazzard JT; Ghosh DK; Tollin G; Masters BS
    FEBS Lett; 2008 Aug; 582(18):2768-72. PubMed ID: 18625229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A cross-domain charge interaction governs the activity of NO synthase.
    Haque MM; Tejero J; Bayachou M; Kenney CT; Stuehr DJ
    J Biol Chem; 2018 Mar; 293(12):4545-4554. PubMed ID: 29414777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.