These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 24084849)

  • 1. Comprehensive identification of mutational cancer driver genes across 12 tumor types.
    Tamborero D; Gonzalez-Perez A; Perez-Llamas C; Deu-Pons J; Kandoth C; Reimand J; Lawrence MS; Getz G; Bader GD; Ding L; Lopez-Bigas N
    Sci Rep; 2013 Oct; 3():2650. PubMed ID: 24084849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circuits of cancer drivers revealed by convergent misregulation of transcription factor targets across tumor types.
    Gonzalez-Perez A
    Genome Med; 2016 Jan; 8(1):6. PubMed ID: 26792175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A compendium of mutational cancer driver genes.
    Martínez-Jiménez F; Muiños F; Sentís I; Deu-Pons J; Reyes-Salazar I; Arnedo-Pac C; Mularoni L; Pich O; Bonet J; Kranas H; Gonzalez-Perez A; Lopez-Bigas N
    Nat Rev Cancer; 2020 Oct; 20(10):555-572. PubMed ID: 32778778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering potential cancer driver genes by an integrated network-based approach.
    Shi K; Gao L; Wang B
    Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LowMACA: exploiting protein family analysis for the identification of rare driver mutations in cancer.
    Melloni GE; de Pretis S; Riva L; Pelizzola M; Céol A; Costanza J; Müller H; Zammataro L
    BMC Bioinformatics; 2016 Feb; 17():80. PubMed ID: 26860319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying cancer driver genes in tumor genome sequencing studies.
    Youn A; Simon R
    Bioinformatics; 2011 Jan; 27(2):175-81. PubMed ID: 21169372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pan-cancer analysis of somatic mutations in miRNA genes.
    Urbanek-Trzeciak MO; Galka-Marciniak P; Nawrocka PM; Kowal E; Szwec S; Giefing M; Kozlowski P
    EBioMedicine; 2020 Nov; 61():103051. PubMed ID: 33038763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the order of mutations during tumorigenesis from tumor genome sequencing data.
    Youn A; Simon R
    Bioinformatics; 2012 Jun; 28(12):1555-61. PubMed ID: 22492649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mutational landscape of chromatin regulatory factors across 4,623 tumor samples.
    Gonzalez-Perez A; Jene-Sanz A; Lopez-Bigas N
    Genome Biol; 2013; 14(9):r106. PubMed ID: 24063517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candidate Cancer Driver Mutations in Distal Regulatory Elements and Long-Range Chromatin Interaction Networks.
    Zhu H; Uusküla-Reimand L; Isaev K; Wadi L; Alizada A; Shuai S; Huang V; Aduluso-Nwaobasi D; Paczkowska M; Abd-Rabbo D; Ocsenas O; Liang M; Thompson JD; Li Y; Ruan L; Krassowski M; Dzneladze I; Simpson JT; Lupien M; Stein LD; Boutros PC; Wilson MD; Reimand J
    Mol Cell; 2020 Mar; 77(6):1307-1321.e10. PubMed ID: 31954095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server.
    Han H; Lehner B; Lee I
    Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential analysis between somatic mutation and germline variation profiles reveals cancer-related genes.
    Przytycki PF; Singh M
    Genome Med; 2017 Aug; 9(1):79. PubMed ID: 28841835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Combinatorial Mutational Patterns in Human Cancer Genomes by Exclusivity Analysis.
    Tan H; Zhou X
    Methods Mol Biol; 2018; 1711():3-11. PubMed ID: 29344882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of collaborative driver pathways in breast cancer.
    Liu Y; Hu Z
    BMC Genomics; 2014 Jul; 15(1):605. PubMed ID: 25034939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A system for detecting high impact-low frequency mutations in primary tumors and metastases.
    Anjanappa M; Hao Y; Simpson ER; Bhat-Nakshatri P; Nelson JB; Tersey SA; Mirmira RG; Cohen-Gadol AA; Saadatzadeh MR; Li L; Fang F; Nephew KP; Miller KD; Liu Y; Nakshatri H
    Oncogene; 2018 Jan; 37(2):185-196. PubMed ID: 28892047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian inference of negative and positive selection in human cancers.
    Weghorn D; Sunyaev S
    Nat Genet; 2017 Dec; 49(12):1785-1788. PubMed ID: 29106416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.