These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 24084998)
1. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration: comment. Díaz JA; Mahajan VN Appl Opt; 2013 Aug; 52(24):5962-4. PubMed ID: 24084998 [TBL] [Abstract][Full Text] [Related]
2. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration: reply. Hasan SY; Shaker AS Appl Opt; 2013 Aug; 52(24):5965-6. PubMed ID: 24084999 [TBL] [Abstract][Full Text] [Related]
3. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration. Hasan SY; Shaker AS Appl Opt; 2012 Dec; 51(35):8490-7. PubMed ID: 23262546 [TBL] [Abstract][Full Text] [Related]
4. Orthonormal aberration polynomials for optical systems with circular and annular sector pupils. Díaz JA; Mahajan VN Appl Opt; 2013 Feb; 52(6):1136-47. PubMed ID: 23434982 [TBL] [Abstract][Full Text] [Related]
5. Orthonormal polynomials in wavefront analysis: analytical solution. Mahajan VN; Dai GM J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271 [TBL] [Abstract][Full Text] [Related]
6. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials. Mafusire C; Krüger TPJ J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):840-849. PubMed ID: 29877326 [TBL] [Abstract][Full Text] [Related]
12. Generalization of Zernike polynomials for regular portions of circles and ellipses. Navarro R; López JL; Díaz JA; Sinusía EP Opt Express; 2014 Sep; 22(18):21263-79. PubMed ID: 25321506 [TBL] [Abstract][Full Text] [Related]
13. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture. Ye J; Gao Z; Wang S; Cheng J; Wang W; Sun W J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2304-11. PubMed ID: 25401259 [TBL] [Abstract][Full Text] [Related]
14. Orthonormal polynomials for annular pupil including a cross-shaped obstruction. Dai F; Wang X; Sasaki O Appl Opt; 2015 Apr; 54(10):2922-8. PubMed ID: 25967208 [TBL] [Abstract][Full Text] [Related]
15. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils. Lee H Opt Lett; 2010 Jul; 35(13):2173-5. PubMed ID: 20596184 [TBL] [Abstract][Full Text] [Related]
16. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials. Zhao C; Burge JH Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717 [TBL] [Abstract][Full Text] [Related]
17. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials. Hou X; Wu F; Yang L; Chen Q Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589 [TBL] [Abstract][Full Text] [Related]
18. Wave-front interpretation with Zernike polynomials. Wang JY; Silva DE Appl Opt; 1980 May; 19(9):1510-8. PubMed ID: 20221066 [TBL] [Abstract][Full Text] [Related]
19. Gram-Schmidt orthonormalization of Zernike polynomials for general aperture shapes. Swantner W; Chow WW Appl Opt; 1994 Apr; 33(10):1832-7. PubMed ID: 20885515 [TBL] [Abstract][Full Text] [Related]
20. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts. Mahajan VN; Aftab M Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]