These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24084998)

  • 21. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zernike olivary polynomials for applications with olivary pupils.
    Zheng Y; Sun S; Li Y
    Appl Opt; 2016 Apr; 55(12):3116-25. PubMed ID: 27140076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zernike-like Laguerre-Gaussian orthonormal polynomials for optical field reconstruction.
    Strycker BD
    Opt Lett; 2022 Dec; 47(23):6137-6140. PubMed ID: 37219191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonrecursive determination of orthonormal polynomials with matrix formulation.
    Dai GM; Mahajan VN
    Opt Lett; 2007 Jan; 32(1):74-6. PubMed ID: 17167588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zernike-like systems in polygons and polygonal facets.
    Ferreira C; López JL; Navarro R; Sinusía EP
    Appl Opt; 2015 Jul; 54(21):6575-83. PubMed ID: 26367845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zernike annular polynomials and optical aberrations of systems with annular pupils.
    Mahajan VN
    Appl Opt; 1994 Dec; 33(34):8125-7. PubMed ID: 20963042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces.
    Hou X; Wu F; Yang L; Wu S; Chen Q
    Appl Opt; 2006 May; 45(15):3442-55. PubMed ID: 16708088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orthonormal polynomials for elliptical wavefronts with an arbitrary orientation.
    Díaz JA; Navarro R
    Appl Opt; 2014 Apr; 53(10):2051-7. PubMed ID: 24787161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials.
    Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1604-13. PubMed ID: 25121449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proof that spot diagram borders are always caustic curves and/or marginal rays II: annular (circular and elliptical) and single hexagonal exit pupils.
    González-García J; Cordero-Dávila A; Reyes-Olguín DG
    Appl Opt; 2022 Mar; 61(8):1876-1884. PubMed ID: 35297876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates.
    Andersen TB
    Opt Express; 2018 Jul; 26(15):18878-18896. PubMed ID: 30114148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scaling pseudo-Zernike expansion coefficients to different pupil sizes.
    Schwiegerling J
    Opt Lett; 2011 Aug; 36(16):3076-8. PubMed ID: 21847165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vector polynomials orthogonal to the gradient of Zernike polynomials.
    Gavrielides A
    Opt Lett; 1982 Nov; 7(11):526. PubMed ID: 19714079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zernike-gauss polynomials and optical aberrations of systems with gaussian pupils.
    Mahajan VN
    Appl Opt; 1995 Dec; 34(34):8057-9. PubMed ID: 21068908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Orthonormal vector polynomials in a unit circle, Part II : Completing the basis set.
    Zhao C; Burge JH
    Opt Express; 2008 Apr; 16(9):6586-91. PubMed ID: 18545361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recursive formula to compute Zernike radial polynomials.
    Honarvar Shakibaei B; Paramesran R
    Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of numerical orthogonal transformation for the Zernike analysis of lateral shearing interferograms.
    Dai F; Tang F; Wang X; Feng P; Sasaki O
    Opt Express; 2012 Jan; 20(2):1530-44. PubMed ID: 22274496
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms.
    Dai F; Tang F; Wang X; Sasaki O; Feng P
    Appl Opt; 2012 Jul; 51(21):5028-37. PubMed ID: 22858941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polynomial fit of interferograms.
    Kim CJ
    Appl Opt; 1982 Dec; 21(24):4521-5. PubMed ID: 20401111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fitting discrete aspherical surface sag data using orthonormal polynomials.
    Hilbig D; Ceyhan U; Henning T; Fleischmann F; Knipp D
    Opt Express; 2015 Aug; 23(17):22404-13. PubMed ID: 26368210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.