These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24085067)

  • 1. Liquid-crystal phase-shifting lateral shearing interferometer with improved fringe contrast for 3D surface profilometry.
    Mehta DS; Inam M; Prakash J; Biradar AM
    Appl Opt; 2013 Sep; 52(25):6119-25. PubMed ID: 24085067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple multifrequency and phase-shifting fringe-projection system based on two-wavelength lateral shearing interferometry for three-dimensional profilometry.
    Mehta DS; Dubey SK; Hossain MM; Shakher C
    Appl Opt; 2005 Dec; 44(35):7515-21. PubMed ID: 16363775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional profilometry of microlenses by phase shifting interferometery using nematic liquid crystal material filled cell as a phase modulator.
    Inam M; Srivastava V; Mehta DS
    Appl Opt; 2015 Feb; 54(5):1085-9. PubMed ID: 25968025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-shifting lateral shearing interferometer with two pairs of wedge plates.
    Lee HH; You JH; Park SH
    Opt Lett; 2003 Nov; 28(22):2243-5. PubMed ID: 14649955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable angular shearing interferometer based on wedged liquid crystal cells.
    Laberdesque R; Jullien A; Bortolozzo U; Forget N; Residori S
    Appl Opt; 2017 Nov; 56(31):8656-8662. PubMed ID: 29091679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale surface metrology with a liquid crystal-based phase-shifting angular shearing interferometer.
    Bag D; Chakraborty S; Sinha A
    Opt Lett; 2024 Apr; 49(7):1705-1708. PubMed ID: 38560842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of birefringence of nematic liquid crystal material by multiple-wavelength interferometry using nearly common-path single-stage Mach-Zehnder interferometer.
    Inam M; Srivastava V; Mehta DS
    Appl Opt; 2013 Nov; 52(33):8067-72. PubMed ID: 24513759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape measurement by use of liquid-crystal display fringe projection with two-step phase shifting.
    Quan C; Tay CJ; Kang X; He XY; Shang HM
    Appl Opt; 2003 May; 42(13):2329-35. PubMed ID: 12737465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single-shot common-path phase-stepping radial shearing interferometer for wavefront measurements.
    Gu N; Huang L; Yang Z; Rao C
    Opt Express; 2011 Feb; 19(5):4703-13. PubMed ID: 21369301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New common-path phase shifting interferometer using a polarization technique.
    Kadono H; Takai N; Asakura T
    Appl Opt; 1987 Mar; 26(5):898-904. PubMed ID: 20454239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns.
    Chen K; Xi J; Yu Y; Tong S; Guo Q
    Appl Opt; 2013 Oct; 52(30):7360-6. PubMed ID: 24216591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Phase Retrieval Method for 3D Shape Measurement of High-Reflectivity Surface Based on π Phase-Shifting Fringes.
    Zhang Y; Sun J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D Optical Surface Profilometer Using a Dual-Frequency Liquid Crystal-Based Dynamic Fringe Pattern Generator.
    Joo KI; Kim M; Park MK; Park H; Kim B; Hahn J; Kim HR
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional high-speed and long-range tomography and profilometry using liquid-crystal Fabry-Perot resonator.
    Banh TQ; Suzuki K; Kimura M; Shioda T
    Appl Opt; 2015 Feb; 54(4):912-8. PubMed ID: 25967805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring the modulus of the spatial coherence function using an error tolerant phase shifting algorithm and a continuous lateral shearing interferometer.
    Harder I; Eisner M; Völkel R; Rothau S; Schwider J; Schwider P
    Opt Express; 2016 Mar; 24(5):5087-5101. PubMed ID: 29092337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-shot detection of 8 unique monochrome fringe patterns representing 4 distinct directions via multispectral fringe projection profilometry.
    Omidi P; Najiminaini M; Diop M; Carson JJL
    Sci Rep; 2021 May; 11(1):10367. PubMed ID: 33990620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic phase-shifting profilometry based on digital micromirror device technology.
    Zhang C; Huang PS; Chiang FP
    Appl Opt; 2002 Oct; 41(28):5896-904. PubMed ID: 12371547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-shifting lateral shearing interferometry using wedge-plate and interferometric grating.
    Disawal R; Dhanotia J; Prakash S
    Appl Opt; 2014 Nov; 53(31):7534-9. PubMed ID: 25402921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-referenced rectangular path cyclic interferometer with polarization phase shifting.
    Sarkar S; Ghosh N; Chakraborty S; Bhattacharya K
    Appl Opt; 2012 Jan; 51(1):126-32. PubMed ID: 22270421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourier transform optical profilometry using fiber optic Lloyd's mirrors.
    Kart T; Kösoğlu G; Yüksel H; İnci MN
    Appl Opt; 2014 Dec; 53(35):8175-81. PubMed ID: 25608057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.