These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24085139)

  • 1. Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique.
    Huang P; Li Y; Wei H; Ren L; Zhao S
    Appl Opt; 2013 Sep; 52(26):6607-15. PubMed ID: 24085139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters.
    Chen B; Xu B; Yan L; Zhang E; Liu Y
    Opt Express; 2015 Apr; 23(7):9052-73. PubMed ID: 25968740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology.
    Lou Y; Yan L; Chen B; Zhang S
    Opt Express; 2017 Mar; 25(6):6805-6821. PubMed ID: 28381023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a Measurement System for Six-Degree-of-Freedom Geometric Errors of a Linear Guide of a Machine Tool.
    Liu CS; Lai JJ; Luo YT
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Five-degrees-of-freedom diffractive laser encoder.
    Liu CH; Huang HL; Lee HW
    Appl Opt; 2009 May; 48(14):2767-77. PubMed ID: 19424401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-precision five-degree-of-freedom measurement system based on laser collimator and interferometry techniques.
    Kuang C; Hong E; Ni J
    Rev Sci Instrum; 2007 Sep; 78(9):095105. PubMed ID: 17902972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of straightness without Abbe error using an enhanced differential plane mirror interferometer.
    Jin T; Ji H; Hou W; Le Y; Shen L
    Appl Opt; 2017 Jan; 56(3):607-610. PubMed ID: 28157917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-sensitivity roll-angle interferometer.
    Le Y; Hou W; Hu K; Shi K
    Opt Lett; 2013 Sep; 38(18):3600-3. PubMed ID: 24104824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology.
    Yu X; Gillmer SR; Woody SC; Ellis JD
    Rev Sci Instrum; 2016 Jun; 87(6):065109. PubMed ID: 27370499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosstalk decoupling measurement method to determine the six degrees of freedom of motion error of linear stages.
    Diao K; Chen C; Leach R; Liu X; Lu W; Yang W
    Appl Opt; 2022 Feb; 61(6):1284-1291. PubMed ID: 35201007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser.
    Cui C; Feng Q; Zhang B; Zhao Y
    Opt Express; 2016 Mar; 24(6):6735-48. PubMed ID: 27136860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error.
    Huang Y; Fan KC; Sun W; Liu S
    Opt Express; 2018 Jun; 26(13):17185-17198. PubMed ID: 30119533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A laser interferometer for measuring straightness and its position based on heterodyne interferometry.
    Chen B; Zhang E; Yan L; Li C; Tang W; Feng Q
    Rev Sci Instrum; 2009 Nov; 80(11):115113. PubMed ID: 19947763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide.
    Qibo F; Bin Z; Cunxing C; Cuifang K; Yusheng Z; Fenglin Y
    Opt Express; 2013 Nov; 21(22):25805-19. PubMed ID: 24216807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, fabrication, and verification of a three-dimensional autocollimator.
    Yin Y; Cai S; Qiao Y
    Appl Opt; 2016 Dec; 55(35):9986-9991. PubMed ID: 27958401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution and stability roll angle measurement method for precision linear displacement stages.
    Jin T; Xia G; Hou W; Le Y; Han S
    Rev Sci Instrum; 2017 Feb; 88(2):023102. PubMed ID: 28249520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Approach to Measure Tilt Motion, Straightness and Position of Precision Linear Stage with a 3D Sinusoidal-Groove Linear Reflective Grating and Triangular Wave-Based Subdivision Method.
    Tsai HA; Lo YL
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31238542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-degree-of-freedom autocollimator based on a combined target reflector.
    Guo Y; Cheng H; Wen Y; Feng Y
    Appl Opt; 2020 Mar; 59(8):2262-2269. PubMed ID: 32225756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement.
    Lee JY; Hsieh HL; Lerondel G; Deturche R; Lu MP; Chen JC
    Appl Opt; 2011 Mar; 50(9):1272-9. PubMed ID: 21460999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage.
    Huang HL; Liu CH; Jywe WY; Wang MS; Fang TH
    Rev Sci Instrum; 2007 Jun; 78(6):066103. PubMed ID: 17614647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.