These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24085166)

  • 1. Polarization-insensitive and broad-angle self-collimation in a two-dimensional photonic crystal with rectangular air holes.
    Jiang L; Wu H; Li X
    Appl Opt; 2013 Sep; 52(27):6676-84. PubMed ID: 24085166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyper collimation ability of two-dimensional photonic crystals.
    Ru G; Zheng Y; Liu J; Jiang X
    Opt Express; 2019 Apr; 27(9):11968-11978. PubMed ID: 31052743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry.
    Xu Y; Chen XJ; Lan S; Dai QF; Guo Q; Wu LJ
    Opt Express; 2009 Mar; 17(6):4903-12. PubMed ID: 19293922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-collimating photonic crystal antireflection structure for both TE and TM polarizations.
    Park JM; Lee SG; Park HR; Lee MH
    Opt Express; 2010 Jun; 18(12):13083-93. PubMed ID: 20588438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband super-collimation in a hybrid photonic crystal structure.
    Hamam RE; Ibanescu M; Johnson SG; Joannopoulos JD; Soljacić M
    Opt Express; 2009 May; 17(10):8109-18. PubMed ID: 19434142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-angle polarization-insensitive negative refraction in high-dielectric photonic crystal.
    Zaremanesh M; Noori M
    Appl Opt; 2019 Jul; 58(21):5631-5636. PubMed ID: 31503863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Self-Collimation Effect in Photonic Crystal Membranes Using Hyperbolic Metamaterials.
    Zheng Y; Wang Q; Lin M; Ouyang Z
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic crystal light-emitting diodes fabricated by microsphere lithography.
    Ng WN; Leung CH; Lai PT; Choi HW
    Nanotechnology; 2008 Jun; 19(25):255302. PubMed ID: 21828649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Far-field self-focusing and -defocusing radiation behaviors of the electroluminescent light sources due to negative refraction.
    Yin YF; Lin YC; Tsai TH; Shen YC; Huang J
    Opt Lett; 2013 Jan; 38(2):184-6. PubMed ID: 23454956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wide-band self-collimation in a low-refractive-index hexagonal lattice.
    Xia C; Kuebler SM; Martinez NP; Martinez M; Rumpf RC; Touma J
    Opt Lett; 2021 May; 46(9):2228-2231. PubMed ID: 33929461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-collimating photonic crystal polarization beam splitter.
    Zabelin V; Dunbar LA; Le Thomas N; Houdré R; Kotlyar MV; O'Faolain L; Krauss TF
    Opt Lett; 2007 Mar; 32(5):530-2. PubMed ID: 17392911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband large-angle self-collimation in two-dimensional silicon photonic crystal.
    Gan L; Qin F; Li ZY
    Opt Lett; 2012 Jun; 37(12):2412-4. PubMed ID: 22739925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angle-insensitive topological interface states in hybrid one-dimensional photonic crystal heterostructures containing all-dielectric metamaterials.
    Wu F; Li H; Hu S; Chen Y; Long Y
    Opt Lett; 2023 Jun; 48(11):3035-3038. PubMed ID: 37262274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the frequency-sensitive super-collimation phenomenon from the geometry of band dispersion surface for two-dimensional photonic crystals.
    Zhang M; Huang J; Jiang X
    Opt Express; 2022 Mar; 30(7):11726-11739. PubMed ID: 35473110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous refractive effects in honeycomb lattice photonic crystals formed by holographic lithography.
    Dong GY; Yang XL; Cai LZ
    Opt Express; 2010 Aug; 18(16):16302-8. PubMed ID: 20721016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact high-resolution spectrometer based on super-prism and local-super-collimation effects of photonic crystal.
    Qi X; Chen J; Guan F; Shi L; Li Y; Liu Y; Xiong L; Lai Z; Wang X; Jiang X
    Opt Express; 2023 Oct; 31(21):34577-34588. PubMed ID: 37859210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of photonic band structure in a one-dimensional photonic crystal containing single-negative materials.
    Yeh DW; Wu CJ
    Opt Express; 2009 Sep; 17(19):16666-80. PubMed ID: 19770882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of broad photonic crystal stop band in a freely-suspended microfiber perforated by an array of rectangular holes.
    Yu Y; Ding W; Gan L; Li ZY; Luo Q; Andrews S
    Opt Express; 2014 Feb; 22(3):2528-35. PubMed ID: 24663545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A GaN photonic crystal membrane laser.
    Lin CH; Wang JY; Chen CY; Shen KC; Yeh DM; Kiang YW; Yang CC
    Nanotechnology; 2011 Jan; 22(2):025201. PubMed ID: 21135479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A redshifted photonic bandgap and wide-angle polarization selection in an all-hyperbolic-metamaterial one-dimensional photonic crystal.
    Wu F; Liu D; Li H; Feng M
    Phys Chem Chem Phys; 2023 Apr; 25(15):10785-10794. PubMed ID: 37010824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.