BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24085515)

  • 1. Use of hairy roots extracts for 2,4-DCP removal and toxicity evaluation by Lactuca sativa test.
    Angelini VA; Agostini E; Medina MI; González PS
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2531-9. PubMed ID: 24085515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the removal of 2,4-dichlorophenol and phenol from polluted water, by peroxidases from tomato hairy roots, and protective effect of polyethylene glycol.
    González PS; Agostini E; Milrad SR
    Chemosphere; 2008 Jan; 70(6):982-9. PubMed ID: 17904197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of 2,4-dichlorophenol using wild type and transgenic tobacco plants.
    Talano MA; Busso DC; Paisio CE; González PS; Purro SA; Medina MI; Agostini E
    Environ Sci Pollut Res Int; 2012 Jul; 19(6):2202-11. PubMed ID: 22234851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale up of 2,4-dichlorophenol removal from aqueous solutions using Brassica napus hairy roots.
    Angelini VA; Orejas J; Medina MI; Agostini E
    J Hazard Mater; 2011 Jan; 185(1):269-74. PubMed ID: 20951495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal.
    Sosa Alderete LG; Talano MA; Ibáñez SG; Purro S; Agostini E; Milrad SR; Medina MI
    J Biotechnol; 2009 Feb; 139(4):273-9. PubMed ID: 19124050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures.
    Talano MA; Frontera S; González P; Medina MI; Agostini E
    J Hazard Mater; 2010 Apr; 176(1-3):784-91. PubMed ID: 20022169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy root cultures.
    Agostini E; Coniglio MS; Milrad SR; Tigier HA; Giulietti AM
    Biotechnol Appl Biochem; 2003 Apr; 37(Pt 2):139-44. PubMed ID: 12630901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation potentiality of garlic roots for 2,4-dichlorophenol removal from aqueous solutions.
    Wang Y; Zhang JX; Ren HJ; Wang Y; Pan HY; Zhang LY
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3629-37. PubMed ID: 25511823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant response of tobacco (Nicotiana tabacum) hairy roots after phenol treatment.
    Sosa Alderete LG; Agostini E; Medina MI
    Plant Physiol Biochem; 2011 Sep; 49(9):1020-8. PubMed ID: 21821425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of two bioassays as potential indicators of phenol phytoremediation efficiency by tobacco hairy roots.
    Paisio CE; Agostini E; González PS
    Environ Technol; 2021 Feb; 42(6):964-971. PubMed ID: 31378163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Typha latifolia as potential phytoremediator of 2,4-dichlorophenol: Analysis of tolerance, uptake and possible transformation processes.
    Rodriguez-Hernandez MC; García De la-Cruz RF; Leyva E; Navarro-Tovar G
    Chemosphere; 2017 Apr; 173():190-198. PubMed ID: 28110008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions.
    Coniglio MS; Busto VD; González PS; Medina MI; Milrad S; Agostini E
    Chemosphere; 2008 Jul; 72(7):1035-42. PubMed ID: 18499219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation, products, and pathways of chlorophenols via electro-enzymatic catalysis: How to control toxic intermediate products.
    Du P; Zhao H; Li H; Zhang D; Huang CH; Deng M; Liu C; Cao H
    Chemosphere; 2016 Feb; 144():1674-81. PubMed ID: 26519798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Campylobacter jejuni thiol peroxidases Tpx and Bcp both contribute to aerotolerance and peroxide-mediated stress resistance but have distinct substrate specificities.
    Atack JM; Harvey P; Jones MA; Kelly DJ
    J Bacteriol; 2008 Aug; 190(15):5279-90. PubMed ID: 18515414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ generation of hydroxyl radical for efficient degradation of 2,4-dichlorophenol from aqueous solutions.
    Ahmadzadeh S; Dolatabadi M
    Environ Monit Assess; 2018 May; 190(6):340. PubMed ID: 29748751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect of nickel ions on the coupled dechlorination of trichloroethylene and 2,4-dichlorophenol by Fe/TiO₂ nanocomposites in the presence of UV light under anoxic conditions.
    Parshetti GK; Doong RA
    Water Res; 2011 Aug; 45(14):4198-210. PubMed ID: 21683974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism for removing 2,4-dichlorophenol via adsorption and Fenton-like oxidation using iron-based nanoparticles.
    Gan L; Li B; Guo M; Weng X; Wang T; Chen Z
    Chemosphere; 2018 Sep; 206():168-174. PubMed ID: 29738906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removing 2,4-dichlorophenol from aqueous environments by heterogeneous catalytic ozonation using synthesized MgO nanoparticles.
    Mohammadi L; Bazrafshan E; Noroozifar M; Ansari-Moghaddam A; Barahuie F; Balarak D
    Water Sci Technol; 2017 Dec; 76(11-12):3054-3068. PubMed ID: 29210691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium.
    Chen A; Zeng G; Chen G; Fan J; Zou Z; Li H; Hu X; Long F
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):811-21. PubMed ID: 21556917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced dechlorination of 2,4-dichlorophenol by Pd/FeFe3O4 nanocomposites.
    Xu J; Tang J; Baig SA; Lv X; Xu X
    J Hazard Mater; 2013 Jan; 244-245():628-36. PubMed ID: 23177251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.