BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24085600)

  • 1. Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, two-formulation and six-period, three-sequence, three-formulation designs.
    Diaz FJ; Berg MJ; Krebill R; Welty T; Gidal BE; Alloway R; Privitera M
    Clin Pharmacokinet; 2013 Dec; 52(12):1033-43. PubMed ID: 24085600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generic-to-generic lamotrigine switches in people with epilepsy: the randomised controlled EQUIGEN trial.
    Privitera MD; Welty TE; Gidal BE; Diaz FJ; Krebill R; Szaflarski JP; Dworetzky BA; Pollard JR; Elder EJ; Jiang W; Jiang X; Berg M
    Lancet Neurol; 2016 Apr; 15(4):365-72. PubMed ID: 26875743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioequivalence Between Generic and Branded Lamotrigine in People With Epilepsy: The EQUIGEN Randomized Clinical Trial.
    Berg M; Welty TE; Gidal BE; Diaz FJ; Krebill R; Szaflarski JP; Dworetzky BA; Pollard JR; Elder EJ; Jiang W; Jiang X; Switzer RD; Privitera MD
    JAMA Neurol; 2017 Aug; 74(8):919-926. PubMed ID: 28654954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioequivalence of generic lamotrigine 100-mg tablets in healthy Thai male volunteers: a randomized, single-dose, two-period, two-sequence crossover study.
    Srichaiya A; Longchoopol C; Oo-Puthinan S; Sayasathid J; Sripalakit P; Viyoch J
    Clin Ther; 2008 Oct; 30(10):1844-51. PubMed ID: 19014839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On statistical power for average bioequivalence testing under replicated crossover designs.
    Wan H; Chow SC
    J Biopharm Stat; 2002 Aug; 12(3):295-309. PubMed ID: 12448572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioequivalence of lamotrigine 50-mg tablets in healthy male volunteers: a randomized, single-dose, 2-period, 2-sequence crossover study.
    Perez-Lloret S; Olmos L; de Mena F; Pieczanski P; Rodriguez Moncalvo JJ
    Arzneimittelforschung; 2012 Oct; 62(10):470-6. PubMed ID: 22933049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage designs for cross-over bioequivalence trials.
    Kieser M; Rauch G
    Stat Med; 2015 Jul; 34(16):2403-16. PubMed ID: 25809815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative confidence intervals for the assessment of bioequivalence in four-period cross-over designs.
    Quiroz J; Ting N; Wei GC; Burdick RK
    Stat Med; 2002 Jul; 21(13):1825-47. PubMed ID: 12111892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex Effect on Average Bioequivalence.
    Ibarra M; Vázquez M; Fagiolino P
    Clin Ther; 2017 Jan; 39(1):23-33. PubMed ID: 28034518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generic lamotrigine versus brand-name Lamictal bioequivalence in patients with epilepsy: A field test of the FDA bioequivalence standard.
    Ting TY; Jiang W; Lionberger R; Wong J; Jones JW; Kane MA; Krumholz A; Temple R; Polli JE
    Epilepsia; 2015 Sep; 56(9):1415-24. PubMed ID: 26201987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioequivalence of single 100-mg doses of two oral formulations of topiramate: an open-label, randomized-sequence, two-period crossover study in healthy adult male Mexican volunteers.
    Piñeyro-López A; Piñeyro-Garza E; Gómez-Silva M; Reyes-Araiza R; Flores-Diego MA; Borrego-Alvarado S; Gamino-Peña ME; Vargas-Zapata R; Salazar-Leal ME
    Clin Ther; 2009 Feb; 31(2):411-7. PubMed ID: 19302913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling type 1 error rate for sequential, bioequivalence studies with crossover designs.
    Rasmussen HE; Ma R; Wang JJ
    Pharm Stat; 2019 Jan; 18(1):96-105. PubMed ID: 30370634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On assessment of bioequivalence under a higher-order crossover design.
    Chow SC; Liu JP
    J Biopharm Stat; 1992; 2(2):239-56. PubMed ID: 1300216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of the repeated cross-over designs in assessing bioequivalence.
    Liu JP
    Stat Med; 1995 May 15-30; 14(9-10):1067-78; discussion 1079-80. PubMed ID: 7569501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioequivalence studies: biometrical concepts of alternative designs and pooled analysis.
    Zintzaras E; Bouka P
    Eur J Drug Metab Pharmacokinet; 1999; 24(3):225-32. PubMed ID: 10716060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of models for average bioequivalence in replicated crossover designs.
    Willavize SA; Morgenthien EA
    Pharm Stat; 2006; 5(3):201-11. PubMed ID: 17080753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Average bioequivalence for two-sequence two-period crossover design with incomplete data.
    Lee JY; Kim BC; Park SG
    J Biopharm Stat; 2005; 15(5):857-67. PubMed ID: 16078389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A note on sample size determination for bioequivalence studies with high-order crossover designs.
    Chen KW; Chow SC; Li G
    J Pharmacokinet Biopharm; 1997 Dec; 25(6):753-65. PubMed ID: 9697082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-stage designs versus European scaled average designs in bioequivalence studies for highly variable drugs: Which to choose?
    Molins E; Cobo E; Ocaña J
    Stat Med; 2017 Dec; 36(30):4777-4788. PubMed ID: 28853164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing for bioequivalence of highly variable drugs from TR-RT crossover designs with heterogeneous residual variances.
    Kang Q; Vahl CI
    Pharm Stat; 2017 Sep; 16(5):361-377. PubMed ID: 28620937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.