These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24085660)

  • 1. Self-assembly and gelation properties of glycine/leucine Fmoc-dipeptides.
    Tang C; Ulijn RV; Saiani A
    Eur Phys J E Soft Matter; 2013 Oct; 36(10):111. PubMed ID: 24085660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of glycine substitution on Fmoc-diphenylalanine self-assembly and gelation properties.
    Tang C; Ulijn RV; Saiani A
    Langmuir; 2011 Dec; 27(23):14438-49. PubMed ID: 21995651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-induced gelation of fluorenyl-9-methoxycarbonyl-l-lysine(fluorenyl-9-methoxycarbonyl)-OH and its dipeptide derivatives showing very low minimum gelation concentrations.
    Geng H; Ye L; Zhang AY; Shao Z; Feng ZG
    J Colloid Interface Sci; 2017 Mar; 490():665-676. PubMed ID: 27940033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts.
    Tang C; Smith AM; Collins RF; Ulijn RV; Saiani A
    Langmuir; 2009 Aug; 25(16):9447-53. PubMed ID: 19537819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic and aromatic interaction-directed supramolecular self-assembly of a designed Fmoc-tripeptide into helical nanoribbons.
    Xie Y; Wang X; Huang R; Qi W; Wang Y; Su R; He Z
    Langmuir; 2015 Mar; 31(9):2885-94. PubMed ID: 25694059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using experimental and computational energy equilibration to understand hierarchical self-assembly of Fmoc-dipeptide amphiphiles.
    Sasselli IR; Pappas CG; Matthews E; Wang T; Hunt NT; Ulijn RV; Tuttle T
    Soft Matter; 2016 Oct; 12(40):8307-8315. PubMed ID: 27722469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comprehensive Study on Self-Assembly and Gelation of C
    Hu T; Zhang Z; Hu H; Euston SR; Pan S
    Biomacromolecules; 2020 Feb; 21(2):670-679. PubMed ID: 31794666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatically activated emulsions stabilised by interfacial nanofibre networks.
    Moreira IP; Sasselli IR; Cannon DA; Hughes M; Lamprou DA; Tuttle T; Ulijn RV
    Soft Matter; 2016 Mar; 12(9):2623-31. PubMed ID: 26905042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Phenylalanine-Leucine, Leucine-Phenylalanine, and Cyclo(-leucine-phenylalanine) Dipeptides through Simulations and Experiments.
    Divanach P; Fanouraki E; Mitraki A; Harmandaris V; Rissanou AN
    J Phys Chem B; 2023 May; 127(19):4208-4219. PubMed ID: 37148280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal array fabrication based on ultrasound-induced self-assembly of metalated dipeptides.
    Isozaki K; Haga Y; Ogata K; Naota T; Takaya H
    Dalton Trans; 2013 Dec; 42(45):15953-66. PubMed ID: 23963158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Intramolecular Aromatic π-π Interactions in the Self-Assembly of Di-l-Phenylalanine Dipeptide Driven by Intermolecular Interactions: Effect of Alanine Substitution.
    Reddy SM; Shanmugam G
    Chemphyschem; 2016 Sep; 17(18):2897-907. PubMed ID: 27309737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Supramolecular Gel Properties by Varying Thermal History.
    Debnath S; Roy S; Abul-Haija YM; Frederix PWJM; Ramalhete SM; Hirst AR; Javid N; Hunt NT; Kelly SM; Angulo J; Khimyak YZ; Ulijn RV
    Chemistry; 2019 Jun; 25(33):7881-7887. PubMed ID: 30945773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unravelling the 2D self-assembly of Fmoc-dipeptides at fluid interfaces.
    Argudo PG; Contreras-Montoya R; Álvarez de Cienfuegos L; Cuerva JM; Cano M; Alba-Molina D; Martín-Romero MT; Camacho L; Giner-Casares JJ
    Soft Matter; 2018 Nov; 14(46):9343-9350. PubMed ID: 30307451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural, mechanical, and biological characterization of hierarchical nanofibrous Fmoc-phenylalanine-valine hydrogels for 3D culture of differentiated and mesenchymal stem cells.
    Najafi H; Tamaddon AM; Abolmaali S; Borandeh S; Azarpira N
    Soft Matter; 2021 Jan; 17(1):57-67. PubMed ID: 33001116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Amino Acid Sequence of Fmoc-Dipeptides for Interaction with Lipid Membranes.
    Argudo PG; Contreras-Montoya R; Álvarez de Cienfuegos L; Martín-Romero MT; Camacho L; Giner-Casares JJ
    J Phys Chem B; 2019 May; 123(17):3721-3730. PubMed ID: 30950622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of the Handedness of Self-assemblies of Dipeptides by the Chirality of Phenylalanine and Steric Hindrance of Phenylglycine.
    Lin S; Li Y; Li B; Yang Y
    Langmuir; 2016 Jul; 32(29):7420-6. PubMed ID: 27389603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the effects of peptoid substitutions in self-assembly of Fmoc-diphenylalanine derivatives.
    Rajbhandary A; Nilsson BL
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27696352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence Adaptive Peptide-Polysaccharide Nanostructures by Biocatalytic Self-Assembly.
    Abul-Haija YM; Ulijn RV
    Biomacromolecules; 2015 Nov; 16(11):3473-9. PubMed ID: 26418176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organogelation and hydrogelation of low-molecular-weight amphiphilic dipeptides: pH responsiveness in phase-selective gelation and dye removal.
    Kar T; Debnath S; Das D; Shome A; Das PK
    Langmuir; 2009 Aug; 25(15):8639-48. PubMed ID: 19338331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.