BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 24085701)

  • 1. Metabolomic investigation of methicillin-resistant Staphylococcus aureus.
    Lei T; Wang L; Chen C; Ji Y
    Methods Mol Biol; 2014; 1085():251-8. PubMed ID: 24085701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomic Profiling of Staphylococcus aureus.
    Lei T; Mao Q; Chen C; Ji Y
    Methods Mol Biol; 2020; 2069():177-186. PubMed ID: 31523774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protocol for the investigation of the intracellular Staphylococcus aureus metabolome.
    Meyer H; Liebeke M; Lalk M
    Anal Biochem; 2010 Jun; 401(2):250-9. PubMed ID: 20211591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Annotation of the Staphylococcus aureus Metabolome Using Liquid Chromatography Coupled to High-Resolution Mass Spectrometry and Application to the Study of Methicillin Resistance.
    Aros-Calt S; Muller BH; Boudah S; Ducruix C; Gervasi G; Junot C; Fenaille F
    J Proteome Res; 2015 Nov; 14(11):4863-75. PubMed ID: 26502275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolomic Investigation of Staphylococcus aureus Antibiotic Susceptibility by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry.
    Aros-Calt S; Castelli FA; Lamourette P; Gervasi G; Junot C; Muller BH; Fenaille F
    Methods Mol Biol; 2019; 1871():279-293. PubMed ID: 30276746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome.
    Guo K; Li L
    Anal Chem; 2009 May; 81(10):3919-32. PubMed ID: 19309105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample preparation methods for LC-MS-based global aqueous metabolite profiling.
    Beltran A; Samino S; Yanes O
    Methods Mol Biol; 2014; 1198():75-80. PubMed ID: 25270923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolome analysis of gram-positive bacteria such as Staphylococcus aureus by GC-MS and LC-MS.
    Liebeke M; Dörries K; Meyer H; Lalk M
    Methods Mol Biol; 2012; 815():377-98. PubMed ID: 22131006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and application of time staggered/mass staggered-globally optimized targeted mass spectrometry.
    Zhong F; Xu M; Zhu J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Jul; 1120():80-88. PubMed ID: 31071582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian cell metabolomics: experimental design and sample preparation.
    León Z; García-Cañaveras JC; Donato MT; Lahoz A
    Electrophoresis; 2013 Oct; 34(19):2762-75. PubMed ID: 23436493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of a sample preparation method for the metabolomic analysis of clinically relevant bacteria.
    Marcinowska R; Trygg J; Wolf-Watz H; Mortiz T; Surowiec I
    J Microbiol Methods; 2011 Oct; 87(1):24-31. PubMed ID: 21763728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast sampling of the cellular metabolome.
    Van Gulik WM; Canelas AB; Taymaz-Nikerel H; Douma RD; de Jonge LP; Heijnen JJ
    Methods Mol Biol; 2012; 881():279-306. PubMed ID: 22639217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells.
    García-Cañaveras JC; López S; Castell JV; Donato MT; Lahoz A
    Anal Bioanal Chem; 2016 Feb; 408(4):1217-30. PubMed ID: 26769129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform.
    Huan T; Li L
    Anal Chem; 2015 Jan; 87(2):1306-13. PubMed ID: 25496403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of isotope labeling liquid chromatography-mass spectrometry for metabolic profiling of bacterial cells and its application for bacterial differentiation.
    Wu Y; Li L
    Anal Chem; 2013 Jun; 85(12):5755-63. PubMed ID: 23495969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular metabolite profiling of platelets: evaluation of extraction processes and chromatographic strategies.
    Paglia G; Magnúsdóttir M; Thorlacius S; Sigurjónsson OE; Guðmundsson S; Palsson BØ; Thiele I
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jun; 898():111-20. PubMed ID: 22608809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometry-based microbial metabolomics.
    Baidoo EE; Benke PI; Keasling JD
    Methods Mol Biol; 2012; 881():215-78. PubMed ID: 22639216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted metabolic profiling rapidly differentiates Escherichia coli and Staphylococcus aureus at species and strain level.
    Li H; Zhu J
    Rapid Commun Mass Spectrom; 2017 Oct; 31(19):1669-1676. PubMed ID: 28776775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel ion pairing LC/MS metabolomics protocol for study of a variety of biologically relevant polar metabolites.
    Knee JM; Rzezniczak TZ; Barsch A; Guo KZ; Merritt TJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Oct; 936():63-73. PubMed ID: 24004912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative liquid chromatography tandem mass spectrometry method for metabolomic analysis of Plasmodium falciparum lipid related metabolites.
    Vo Duy S; Besteiro S; Berry L; Perigaud C; Bressolle F; Vial HJ; Lefebvre-Tournier I
    Anal Chim Acta; 2012 Aug; 739():47-55. PubMed ID: 22819049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.