BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24086129)

  • 1. Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice.
    Hauber I; Hofmann-Sieber H; Chemnitz J; Dubrau D; Chusainow J; Stucka R; Hartjen P; Schambach A; Ziegler P; Hackmann K; Schröck E; Schumacher U; Lindner C; Grundhoff A; Baum C; Manz MG; Buchholz F; Hauber J
    PLoS Pathog; 2013; 9(9):e1003587. PubMed ID: 24086129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase.
    Mariyanna L; Priyadarshini P; Hofmann-Sieber H; Krepstakies M; Walz N; Grundhoff A; Buchholz F; Hildt E; Hauber J
    PLoS One; 2012; 7(2):e31576. PubMed ID: 22348110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HIV-1 proviral DNA excision using an evolved recombinase.
    Sarkar I; Hauber I; Hauber J; Buchholz F
    Science; 2007 Jun; 316(5833):1912-5. PubMed ID: 17600219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interview: HIV-1 proviral DNA excision using an evolved recombinase.
    Hauber J
    J Vis Exp; 2008 Jun; (16):. PubMed ID: 19066545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evolution and analysis of HIV-1 LTR-specific recombinases.
    Buchholz F; Hauber J
    Methods; 2011 Jan; 53(1):102-9. PubMed ID: 20600935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal Tre (uTre) recombinase specifically targets the majority of HIV-1 isolates.
    Karpinski J; Chemnitz J; Hauber I; Abi-Ghanem J; Paszkowski-Rogacz M; Surendranath V; Chakrabort D; Hackmann K; Schröck E; Pisabarro MT; Hauber J; Buchholz F
    J Int AIDS Soc; 2014; 17(4 Suppl 3):19706. PubMed ID: 25397454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional suppression of in vitro-integrated human immunodeficiency virus type 1 does not correlate with proviral DNA methylation.
    Pion M; Jordan A; Biancotto A; Dequiedt F; Gondois-Rey F; Rondeau S; Vigne R; Hejnar J; Verdin E; Hirsch I
    J Virol; 2003 Apr; 77(7):4025-32. PubMed ID: 12634362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of an engineered, HIV-specific recombinase for removal of integrated proviral DNA.
    Meinke G; Karpinski J; Buchholz F; Bohm A
    Nucleic Acids Res; 2017 Sep; 45(16):9726-9740. PubMed ID: 28934476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Sequencing Analysis of Individual HIV-1 Proviruses Reveals Frequent Asymmetric Long Terminal Repeats.
    Joseph KW; Halvas EK; Brandt LD; Patro SC; Rausch JW; Chopra A; Mallal S; Kearney MF; Coffin JM; Mellors JW
    J Virol; 2022 Jul; 96(13):e0012222. PubMed ID: 35674431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evolution of the tre recombinase.
    Buchholz F
    J Vis Exp; 2008 May; (15):. PubMed ID: 19066582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An engineered lox sequence containing part of a long terminal repeat of HIV-1 permits Cre recombinase-mediated DNA excision.
    Lee YS; Kim ST; Kim GW; Lee M; Park JS
    Biochem Cell Biol; 2000; 78(6):653-8. PubMed ID: 11206575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells.
    Qu X; Wang P; Ding D; Li L; Wang H; Ma L; Zhou X; Liu S; Lin S; Wang X; Zhang G; Liu S; Liu L; Wang J; Zhang F; Lu D; Zhu H
    Nucleic Acids Res; 2013 Sep; 41(16):7771-82. PubMed ID: 23804764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AIDS/HIV. A reversal of fortune in HIV-1 integration.
    Engelman A
    Science; 2007 Jun; 316(5833):1855-7. PubMed ID: 17600205
    [No Abstract]   [Full Text] [Related]  

  • 15. A novel mutant loxP containing part of long terminal repeat of HIV-1 in spacer region: presentation of possible target site for antiviral strategy using site-specific recombinase.
    Lee Y; Park J
    Biochem Biophys Res Commun; 1998 Dec; 253(3):588-93. PubMed ID: 9918772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of an HIV-1-resistant immune system with CD34(+) hematopoietic stem cells transduced with a triple-combination anti-HIV lentiviral vector.
    Walker JE; Chen RX; McGee J; Nacey C; Pollard RB; Abedi M; Bauer G; Nolta JA; Anderson JS
    J Virol; 2012 May; 86(10):5719-29. PubMed ID: 22398281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc finger protein designed to target 2-long terminal repeat junctions interferes with human immunodeficiency virus integration.
    Sakkhachornphop S; Barbas CF; Keawvichit R; Wongworapat K; Tayapiwatana C
    Hum Gene Ther; 2012 Sep; 23(9):932-42. PubMed ID: 22429108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIV Provirus Stably Reproduces Parental Latent and Induced Transcription Phenotypes Regardless of the Chromosomal Integration Site.
    Hashemi FB; Barreto K; Bernhard W; Hashemi P; Lomness A; Sadowski I
    J Virol; 2016 Jun; 90(11):5302-14. PubMed ID: 26984732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A lentiviral vector that activates latent human immunodeficiency virus-1 proviruses by the overexpression of tat and that kills the infected cells.
    Macías D; Oya R; Saniger L; Martín F; Luque F
    Hum Gene Ther; 2009 Nov; 20(11):1259-68. PubMed ID: 19604078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high excision potential of TALENs for integrated DNA of HIV-based lentiviral vector.
    Ebina H; Kanemura Y; Misawa N; Sakuma T; Kobayashi T; Yamamoto T; Koyanagi Y
    PLoS One; 2015; 10(3):e0120047. PubMed ID: 25781496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.