These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24086179)

  • 21. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.
    Wu P; Zhang C
    Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laser-Engraved Textiles for Engineering Capillary Flow and Application in Microfluidics.
    Li Y; Fischer R; Zboray R; Boillat P; Camenzind M; Toncelli C; Rossi RM
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29908-29916. PubMed ID: 32506905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coating of Conducting and Insulating Threads with Porous MOF Particles through Langmuir-Blodgett Technique.
    Rauf S; Andrés MA; Roubeau O; Gascón I; Serre C; Eddaoudi M; Salama KN
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33435145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A perspective on paper-based microfluidics: Current status and future trends.
    Li X; Ballerini DR; Shen W
    Biomicrofluidics; 2012 Mar; 6(1):11301-1130113. PubMed ID: 22662067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laser-induced photo-polymerisation for creation of paper-based fluidic devices.
    Sones CL; Katis IN; He PJ; Mills B; Namiq MF; Shardlow P; Ibsen M; Eason RW
    Lab Chip; 2014 Dec; 14(23):4567-74. PubMed ID: 25286149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elastic Textile Threads for Fog Harvesting.
    Nguyen LT; Bai Z; Zhu J; Gao C; Zhang B; Guo J
    Langmuir; 2022 Aug; 38(30):9136-9147. PubMed ID: 35849073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic Behavior of Alumina Nanotube-Based Pathways within Hydrophobic CNT Barriers.
    Aksu C; Bradford PD; Jur JS
    Langmuir; 2020 Aug; 36(30):8792-8799. PubMed ID: 32663010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water.
    Caetano FR; Carneiro EA; Agustini D; Figueiredo-Filho LCS; Banks CE; Bergamini MF; Marcolino-Junior LH
    Biosens Bioelectron; 2018 Jan; 99():382-388. PubMed ID: 28806668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization and optimization of low cost microfluidic thread based electroanalytical device for micro flow injection analysis.
    Agustini D; Bergamini MF; Marcolino-Junior LH
    Anal Chim Acta; 2017 Jan; 951():108-115. PubMed ID: 27998478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing the contribution of sewing threads to microfiber release during domestic laundering.
    Rathinamoorthy R; Raja Balasaraswathi S
    Environ Pollut; 2024 Sep; 362():124966. PubMed ID: 39284407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding thread properties for red blood cell antigen assays: weak ABO blood typing.
    Nilghaz A; Zhang L; Li M; Ballerini DR; Shen W
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22209-15. PubMed ID: 25399507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advances in low-cost microfluidic platforms for diagnostic applications.
    Tomazelli Coltro WK; Cheng CM; Carrilho E; de Jesus DP
    Electrophoresis; 2014 Aug; 35(16):2309-24. PubMed ID: 24668896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Palaeoproteomics and microanalysis reveal techniques of production of animal-based metal threads in medieval textiles.
    Scibè C; Eng-Wilmot K; Lam T; Tosini I; López MJG; Solazzo C
    Sci Rep; 2024 Mar; 14(1):5320. PubMed ID: 38438441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic cloth-based analytical devices: Emerging technologies and applications.
    Zhang C; Su Y; Liang Y; Lai W
    Biosens Bioelectron; 2020 Nov; 168():112391. PubMed ID: 32862091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics.
    Mostafalu P; Akbari M; Alberti KA; Xu Q; Khademhosseini A; Sonkusale SR
    Microsyst Nanoeng; 2016; 2():16039. PubMed ID: 31057832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps.
    Dornelas KL; Dossi N; Piccin E
    Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programmable Paper-Based Microfluidic Devices for Biomarker Detections.
    Soum V; Park S; Brilian AI; Kwon OS; Shin K
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31382502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in textile-based microfluidics for biomolecule sensing.
    Milić L; Zambry NS; Ibrahim FB; Petrović B; Kojić S; Thiha A; Joseph K; Jamaluddin NF; Stojanović GM
    Biomicrofluidics; 2024 Sep; 18(5):051502. PubMed ID: 39296324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical and experimental study of capillary-driven flow of PCR solution in hybrid hydrophobic microfluidic networks.
    Ramalingam N; Warkiani ME; Ramalingam N; Keshavarzi G; Hao-Bing L; Hai-Qing TG
    Biomed Microdevices; 2016 Aug; 18(4):68. PubMed ID: 27432321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical Textile Valves for Paper Microfluidics.
    Ainla A; Hamedi MM; Güder F; Whitesides GM
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28809064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.