These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24086286)

  • 1. Visual acuity of simulated thalamic visual prostheses in normally sighted humans.
    Bourkiza B; Vurro M; Jeffries A; Pezaris JS
    PLoS One; 2013; 8(9):e73592. PubMed ID: 24086286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement in reading performance through training with simulated thalamic visual prostheses.
    Rassia KEK; Pezaris JS
    Sci Rep; 2018 Nov; 8(1):16310. PubMed ID: 30397211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to Phosphene Parameters Based on Multi-Object Recognition Using Simulated Prosthetic Vision.
    Xia P; Hu J; Peng Y
    Artif Organs; 2015 Dec; 39(12):1038-45. PubMed ID: 25912967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory augmentation to aid training with retinal prostheses.
    Kvansakul J; Hamilton L; Ayton LN; McCarthy C; Petoe MA
    J Neural Eng; 2020 Jul; 17(4):045001. PubMed ID: 32554868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device.
    Srivastava NR; Troyk PR; Dagnelie G
    J Neural Eng; 2009 Jun; 6(3):035008. PubMed ID: 19458397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of thalamic prosthetic vision: reading accuracy, speed, and acuity in sighted humans.
    Vurro M; Crowell AM; Pezaris JS
    Front Hum Neurosci; 2014; 8():816. PubMed ID: 25408641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reading text works better than watching videos to improve acuity in a simulation of artificial vision.
    Rassia KEK; Moutoussis K; Pezaris JS
    Sci Rep; 2022 Jul; 12(1):12953. PubMed ID: 35902596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating Visibility and Reading Performance in Low Vision.
    Xiong YZ; Lei Q; Calabrèse A; Legge GE
    Front Neurosci; 2021; 15():671121. PubMed ID: 34290578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards an assistive peripheral visual prosthesis for long-term treatment of retinitis pigmentosa: evaluating mobility performance in immersive simulations.
    Zapf MP; Boon MY; Matteucci PB; Lovell NH; Suaning GJ
    J Neural Eng; 2015 Jun; 12(3):036001. PubMed ID: 25782059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system.
    Cha K; Horch K; Normann RA
    Ann Biomed Eng; 1992; 20(4):439-49. PubMed ID: 1510295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel simulation paradigm utilising MRI-derived phosphene maps for cortical prosthetic vision.
    Wang HZ; Wong YT
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37531948
    [No Abstract]   [Full Text] [Related]  

  • 13. Assistive peripheral phosphene arrays deliver advantages in obstacle avoidance in simulated end-stage retinitis pigmentosa: a virtual-reality study.
    Zapf MP; Boon MY; Lovell NH; Suaning GJ
    J Neural Eng; 2016 Apr; 13(2):026022. PubMed ID: 26902525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of visual acuity measured with Allen figures and Snellen letters using the B-VAT II monitor.
    Lueder GT; Garibaldi D
    Ophthalmology; 1997 Nov; 104(11):1758-61. PubMed ID: 9373103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaze behavior during navigation with reduced acuity.
    Freedman A; Achtemeier J; Baek Y; Legge GE
    Exp Eye Res; 2019 Jun; 183():20-28. PubMed ID: 30445049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying visual acuity for pre-clinical testing of visual prostheses.
    Spencer M; Kameneva T; Grayden DB; Burkitt AN; Meffin H
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36270430
    [No Abstract]   [Full Text] [Related]  

  • 17. Assessing the utility of visual acuity measures in visual prostheses.
    Caspi A; Zivotofsky AZ
    Vision Res; 2015 Mar; 108():77-84. PubMed ID: 25637855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of electrode placement for a thalamic visual prosthesis.
    Pezaris JS; Reid RC
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):172-8. PubMed ID: 19224730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of objects in simulated irregular phosphene maps for an epiretinal prosthesis.
    Lu Y; Wang J; Wu H; Li L; Cao X; Chai X
    Artif Organs; 2014 Feb; 38(2):E10-20. PubMed ID: 24117959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full gaze contingency provides better reading performance than head steering alone in a simulation of prosthetic vision.
    Paraskevoudi N; Pezaris JS
    Sci Rep; 2021 May; 11(1):11121. PubMed ID: 34045485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.