These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
427 related articles for article (PubMed ID: 24086320)
1. Bayesian parameter inference by Markov chain Monte Carlo with hybrid fitness measures: theory and test in apoptosis signal transduction network. Murakami Y; Takada S PLoS One; 2013; 8(9):e74178. PubMed ID: 24086320 [TBL] [Abstract][Full Text] [Related]
2. Inference of regulatory networks with a convergence improved MCMC sampler. Agostinho NB; Machado KS; Werhli AV BMC Bioinformatics; 2015 Sep; 16():306. PubMed ID: 26399857 [TBL] [Abstract][Full Text] [Related]
3. A simple introduction to Markov Chain Monte-Carlo sampling. van Ravenzwaaij D; Cassey P; Brown SD Psychon Bull Rev; 2018 Feb; 25(1):143-154. PubMed ID: 26968853 [TBL] [Abstract][Full Text] [Related]
4. Estimation of evolutionary parameters using short, random and partial sequences from mixed samples of anonymous individuals. Wu SH; Rodrigo AG BMC Bioinformatics; 2015 Nov; 16():357. PubMed ID: 26536860 [TBL] [Abstract][Full Text] [Related]
5. Study on mapping quantitative trait loci for animal complex binary traits using Bayesian-Markov chain Monte Carlo approach. Liu J; Zhang Y; Zhang Q; Wang L; Zhang J Sci China C Life Sci; 2006 Dec; 49(6):552-9. PubMed ID: 17312993 [TBL] [Abstract][Full Text] [Related]
6. Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Wegmann D; Leuenberger C; Excoffier L Genetics; 2009 Aug; 182(4):1207-18. PubMed ID: 19506307 [TBL] [Abstract][Full Text] [Related]
7. A gradient Markov chain Monte Carlo algorithm for computing multivariate maximum likelihood estimates and posterior distributions: mixture dose-response assessment. Li R; Englehardt JD; Li X Risk Anal; 2012 Feb; 32(2):345-59. PubMed ID: 21906114 [TBL] [Abstract][Full Text] [Related]
8. Phylogenetic MCMC algorithms are misleading on mixtures of trees. Mossel E; Vigoda E Science; 2005 Sep; 309(5744):2207-9. PubMed ID: 16195459 [TBL] [Abstract][Full Text] [Related]
9. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Satagopan JM; Yandell BS; Newton MA; Osborn TC Genetics; 1996 Oct; 144(2):805-16. PubMed ID: 8889541 [TBL] [Abstract][Full Text] [Related]
10. An adaptive Kriging surrogate method for efficient joint estimation of hydraulic and biochemical parameters in reactive transport modeling. Zhou J; Su X; Cui G J Contam Hydrol; 2018 Sep; 216():50-57. PubMed ID: 30170768 [TBL] [Abstract][Full Text] [Related]
11. Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation. Stathopoulos V; Girolami MA Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1984):20110541. PubMed ID: 23277599 [TBL] [Abstract][Full Text] [Related]
12. Identifiability of parameters in MCMC Bayesian inference of phylogeny. Rannala B Syst Biol; 2002 Oct; 51(5):754-60. PubMed ID: 12396589 [TBL] [Abstract][Full Text] [Related]
13. Efficient Markov chain Monte Carlo methods for decoding neural spike trains. Ahmadian Y; Pillow JW; Paninski L Neural Comput; 2011 Jan; 23(1):46-96. PubMed ID: 20964539 [TBL] [Abstract][Full Text] [Related]
15. Bayesian inference of the sites of perturbations in metabolic pathways via Markov chain Monte Carlo. Jayawardhana B; Kell DB; Rattray M Bioinformatics; 2008 May; 24(9):1191-7. PubMed ID: 18356193 [TBL] [Abstract][Full Text] [Related]
16. Markov chain Monte Carlo: an introduction for epidemiologists. Hamra G; MacLehose R; Richardson D Int J Epidemiol; 2013 Apr; 42(2):627-34. PubMed ID: 23569196 [TBL] [Abstract][Full Text] [Related]
17. AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Nylander JA; Wilgenbusch JC; Warren DL; Swofford DL Bioinformatics; 2008 Feb; 24(4):581-3. PubMed ID: 17766271 [TBL] [Abstract][Full Text] [Related]
18. Exploring heterogeneity in tumour data using Markov chain Monte Carlo. de Gunst MC; Dewanji A; Luebeck EG Stat Med; 2003 May; 22(10):1691-707. PubMed ID: 12720305 [TBL] [Abstract][Full Text] [Related]
19. Ideal Observer Computation by Use of Markov-Chain Monte Carlo With Generative Adversarial Networks. Zhou W; Villa U; Anastasio MA IEEE Trans Med Imaging; 2023 Dec; 42(12):3715-3724. PubMed ID: 37578916 [TBL] [Abstract][Full Text] [Related]
20. Bayesian Inference for IRT Models with Non-Normal Latent Trait Distributions. Zhang X; Wang C; Weiss DJ; Tao J Multivariate Behav Res; 2021; 56(5):703-723. PubMed ID: 32598188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]