BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24086368)

  • 1. An epistatic interaction between the PAX8 and STK17B genes in papillary thyroid cancer susceptibility.
    Landa I; Boullosa C; Inglada-Pérez L; Sastre-Perona A; Pastor S; Velázquez A; Mancikova V; Ruiz-Llorente S; Schiavi F; Marcos R; Malats N; Opocher G; Diaz-Uriarte R; Santisteban P; Valencia A; Robledo M
    PLoS One; 2013; 8(9):e74765. PubMed ID: 24086368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of PAX8/PPARG and RET/PTC rearrangements is feasible in routine air-dried fine needle aspiration smears.
    Ferraz C; Rehfeld C; Krogdahl A; Precht Jensen EM; Bösenberg E; Narz F; Hegedüs L; Paschke R; Eszlinger M
    Thyroid; 2012 Oct; 22(10):1025-30. PubMed ID: 23025542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor genotype determines phenotype and disease-related outcomes in thyroid cancer: a study of 1510 patients.
    Yip L; Nikiforova MN; Yoo JY; McCoy KL; Stang MT; Armstrong MJ; Nicholson KJ; Ohori NP; Coyne C; Hodak SP; Ferris RL; LeBeau SO; Nikiforov YE; Carty SE
    Ann Surg; 2015 Sep; 262(3):519-25; discussion 524-5. PubMed ID: 26258321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics.
    Leeman-Neill RJ; Brenner AV; Little MP; Bogdanova TI; Hatch M; Zurnadzy LY; Mabuchi K; Tronko MD; Nikiforov YE
    Cancer; 2013 May; 119(10):1792-9. PubMed ID: 23436219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New somatic mutations and WNK1-B4GALNT3 gene fusion in papillary thyroid carcinoma.
    Costa V; Esposito R; Ziviello C; Sepe R; Bim LV; Cacciola NA; Decaussin-Petrucci M; Pallante P; Fusco A; Ciccodicola A
    Oncotarget; 2015 May; 6(13):11242-51. PubMed ID: 25803323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer.
    He H; Li W; Liyanarachchi S; Srinivas M; Wang Y; Akagi K; Wang Y; Wu D; Wang Q; Jin V; Symer DE; Shen R; Phay J; Nagy R; de la Chapelle A
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6128-33. PubMed ID: 25918370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of ATM and FOXE1 (TTF2) to risk of papillary thyroid carcinoma in Belarusian children exposed to radiation.
    Damiola F; Byrnes G; Moissonnier M; Pertesi M; Deltour I; Fillon A; Le Calvez-Kelm F; Tenet V; McKay-Chopin S; McKay JD; Malakhova I; Masyakin V; Cardis E; Lesueur F; Kesminiene A
    Int J Cancer; 2014 Apr; 134(7):1659-68. PubMed ID: 24105688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic and prognostic implications of the PAX8-PPARγ translocation in thyroid carcinomas-a TMA-based study of 226 cases.
    Boos LA; Dettmer M; Schmitt A; Rudolph T; Steinert H; Moch H; Sobrinho-Simões M; Komminoth P; Perren A
    Histopathology; 2013 Aug; 63(2):234-41. PubMed ID: 23738683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selected single-nucleotide polymorphisms in FOXE1, SERPINA5, FTO, EVPL, TICAM1 and SCARB1 are associated with papillary and follicular thyroid cancer risk: replication study in a German population.
    Sigurdson AJ; Brenner AV; Roach JA; Goudeva L; Müller JA; Nerlich K; Reiners C; Schwab R; Pfeiffer L; Waldenberger M; Braganza M; Xu L; Sturgis EM; Yeager M; Chanock SJ; Pfeiffer RM; Abend M; Port M
    Carcinogenesis; 2016 Jul; 37(7):677-684. PubMed ID: 27207655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MYC promotes the development of papillary thyroid carcinoma by inhibiting the expression of lncRNA PAX8‑AS1:28.
    Zhang Y; Li F; Chen J
    Oncol Rep; 2019 Apr; 41(4):2511-2517. PubMed ID: 30720110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas.
    Marques AR; Espadinha C; Catarino AL; Moniz S; Pereira T; Sobrinho LG; Leite V
    J Clin Endocrinol Metab; 2002 Aug; 87(8):3947-52. PubMed ID: 12161538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAX8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues.
    Lacroix L; Mian C; Barrier T; Talbot M; Caillou B; Schlumberger M; Bidart JM
    Eur J Endocrinol; 2004 Sep; 151(3):367-74. PubMed ID: 15362967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trisomy 17 as a marker for a subset of noninvasive thyroid nodules with focal features of papillary carcinoma: cytogenetic and molecular analysis of 62 cases and correlation with histological findings.
    Frau DV; Lai ML; Caria P; Dettori T; Coni P; Faa G; Morandi L; Tallini G; Vanni R
    J Clin Endocrinol Metab; 2008 Jan; 93(1):177-81. PubMed ID: 17956956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The miR-146b-3p/PAX8/NIS Regulatory Circuit Modulates the Differentiation Phenotype and Function of Thyroid Cells during Carcinogenesis.
    Riesco-Eizaguirre G; Wert-Lamas L; Perales-Patón J; Sastre-Perona A; Fernández LP; Santisteban P
    Cancer Res; 2015 Oct; 75(19):4119-30. PubMed ID: 26282166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of PAX8 Target Genes in Papillary Thyroid Carcinoma.
    Rosignolo F; Sponziello M; Durante C; Puppin C; Mio C; Baldan F; Di Loreto C; Russo D; Filetti S; Damante G
    PLoS One; 2016; 11(6):e0156658. PubMed ID: 27249794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression of thyroid-specific transcription factors may help diagnose thyroid lesions but are not determinants of tumor progression.
    Batista FA; Ward LS; Marcello MA; Martins MB; Peres KC; Torricelli C; Bufalo NE; Soares FA; da Silva MJ; Assumpção LV
    J Endocrinol Invest; 2016 Apr; 39(4):423-9. PubMed ID: 26370671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic predisposition to papillary thyroid carcinoma: involvement of FOXE1, TSHR, and a novel lincRNA gene, PTCSC2.
    He H; Li W; Liyanarachchi S; Jendrzejewski J; Srinivas M; Davuluri RV; Nagy R; de la Chapelle A
    J Clin Endocrinol Metab; 2015 Jan; 100(1):E164-72. PubMed ID: 25303483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of epistatic interactions through genome-wide association studies in sporadic medullary and juvenile papillary thyroid carcinomas.
    Luzón-Toro B; Bleda M; Navarro E; García-Alonso L; Ruiz-Ferrer M; Medina I; Martín-Sánchez M; Gonzalez CY; Fernández RM; Torroglosa A; Antiñolo G; Dopazo J; Borrego S
    BMC Med Genomics; 2015 Dec; 8():83. PubMed ID: 26690675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymorphisms in selected DNA repair genes and cell cycle regulating genes involved in the risk of papillary thyroid carcinoma.
    Halkova T; Dvorakova S; Sykorova V; Vaclavikova E; Vcelak J; Vlcek P; Sykorova P; Kodetova D; Betka J; Lastuvka P; Bavor P; Hoch J; Katra R; Bendlova B
    Cancer Biomark; 2016 Jun; 17(1):97-106. PubMed ID: 27314298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships of FOXE1 and ATM genetic polymorphisms with papillary thyroid carcinoma risk: a meta-analysis.
    Kang J; Deng XZ; Fan YB; Wu B
    Tumour Biol; 2014 Jul; 35(7):7085-96. PubMed ID: 24756757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.