These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 24086491)
1. Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox. Hiblot J; Gotthard G; Elias M; Chabriere E PLoS One; 2013; 8(9):e75272. PubMed ID: 24086491 [TBL] [Abstract][Full Text] [Related]
2. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. Elias M; Dupuy J; Merone L; Mandrich L; Porzio E; Moniot S; Rochu D; Lecomte C; Rossi M; Masson P; Manco G; Chabriere E J Mol Biol; 2008 Jun; 379(5):1017-28. PubMed ID: 18486146 [TBL] [Abstract][Full Text] [Related]
3. Rational engineering of a native hyperthermostable lactonase into a broad spectrum phosphotriesterase. Jacquet P; Hiblot J; Daudé D; Bergonzi C; Gotthard G; Armstrong N; Chabrière E; Elias M Sci Rep; 2017 Dec; 7(1):16745. PubMed ID: 29196634 [TBL] [Abstract][Full Text] [Related]
4. SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase. Bzdrenga J; Hiblot J; Gotthard G; Champion C; Elias M; Chabriere E BMC Res Notes; 2014 Jun; 7():333. PubMed ID: 24894602 [TBL] [Abstract][Full Text] [Related]
5. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426. Zhang Y; An J; Yang GY; Bai A; Zheng B; Lou Z; Wu G; Ye W; Chen HF; Feng Y; Manco G PLoS One; 2015; 10(2):e0115130. PubMed ID: 25706379 [TBL] [Abstract][Full Text] [Related]
6. Structural and Functional Characterization of New SsoPox Variant Points to the Dimer Interface as a Driver for the Increase in Promiscuous Paraoxonase Activity. Suzumoto Y; Dim O; Roviello GN; Worek F; Sussman JL; Manco G Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32121487 [TBL] [Abstract][Full Text] [Related]
7. Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase. Merone L; Mandrich L; Porzio E; Rossi M; Müller S; Reiter G; Worek F; Manco G Bioresour Technol; 2010 Dec; 101(23):9204-12. PubMed ID: 20667718 [TBL] [Abstract][Full Text] [Related]
8. High yield production and purification of two recombinant thermostable phosphotriesterase-like lactonases from Sulfolobus acidocaldarius and Sulfolobus solfataricus useful as bioremediation tools and bioscavengers. Restaino OF; Borzacchiello MG; Scognamiglio I; Fedele L; Alfano A; Porzio E; Manco G; De Rosa M; Schiraldi C BMC Biotechnol; 2018 Mar; 18(1):18. PubMed ID: 29558934 [TBL] [Abstract][Full Text] [Related]
9. Characterisation of the organophosphate hydrolase catalytic activity of SsoPox. Hiblot J; Gotthard G; Chabriere E; Elias M Sci Rep; 2012; 2():779. PubMed ID: 23139857 [TBL] [Abstract][Full Text] [Related]
10. Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus. Hiblot J; Gotthard G; Chabriere E; Elias M PLoS One; 2012; 7(10):e47028. PubMed ID: 23071703 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing. Ng FS; Wright DM; Seah SY Appl Environ Microbiol; 2011 Feb; 77(4):1181-6. PubMed ID: 21183649 [TBL] [Abstract][Full Text] [Related]
12. Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides. Zhang Y; An J; Ye W; Yang G; Qian ZG; Chen HF; Cui L; Feng Y Appl Environ Microbiol; 2012 Sep; 78(18):6647-55. PubMed ID: 22798358 [TBL] [Abstract][Full Text] [Related]
13. Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications. Rémy B; Plener L; Poirier L; Elias M; Daudé D; Chabrière E Sci Rep; 2016 Nov; 6():37780. PubMed ID: 27876889 [TBL] [Abstract][Full Text] [Related]
14. Hyperthermophilic phosphotriesterases/lactonases for the environment and human health. Mandrich L; Merone L; Manco G Environ Technol; 2010 Sep; 31(10):1115-27. PubMed ID: 20718294 [TBL] [Abstract][Full Text] [Related]
15. A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Merone L; Mandrich L; Rossi M; Manco G Extremophiles; 2005 Aug; 9(4):297-305. PubMed ID: 15909078 [TBL] [Abstract][Full Text] [Related]
16. Phosphotriesterase-Magnetic Nanoparticle Bioconjugates with Improved Enzyme Activity in a Biocatalytic Membrane Reactor. Gebreyohannes AY; Mazzei R; Marei Abdelrahim MY; Vitola G; Porzio E; Manco G; Barboiu M; Giorno L Bioconjug Chem; 2018 Jun; 29(6):2001-2008. PubMed ID: 29792416 [TBL] [Abstract][Full Text] [Related]
17. An efficient thermostable organophosphate hydrolase and its application in pesticide decontamination. Del Giudice I; Coppolecchia R; Merone L; Porzio E; Carusone TM; Mandrich L; Worek F; Manco G Biotechnol Bioeng; 2016 Apr; 113(4):724-34. PubMed ID: 26416557 [TBL] [Abstract][Full Text] [Related]
18. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase. Mandrich L; Manco G Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255 [TBL] [Abstract][Full Text] [Related]
19. Conformational sampling, catalysis, and evolution of the bacterial phosphotriesterase. Jackson CJ; Foo JL; Tokuriki N; Afriat L; Carr PD; Kim HK; Schenk G; Tawfik DS; Ollis DL Proc Natl Acad Sci U S A; 2009 Dec; 106(51):21631-6. PubMed ID: 19966226 [TBL] [Abstract][Full Text] [Related]