BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24086547)

  • 1. Comparing memory-efficient genome assemblers on stand-alone and cloud infrastructures.
    Kleftogiannis D; Kalnis P; Bajic VB
    PLoS One; 2013; 8(9):e75505. PubMed ID: 24086547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallelized short read assembly of large genomes using de Bruijn graphs.
    Liu Y; Schmidt B; Maskell DL
    BMC Bioinformatics; 2011 Aug; 12():354. PubMed ID: 21867511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembler for de novo assembly of large genomes.
    Chu TC; Lu CH; Liu T; Lee GC; Li WH; Shih AC
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):E3417-24. PubMed ID: 23966565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-generation sequencing and large genome assemblies.
    Henson J; Tischler G; Ning Z
    Pharmacogenomics; 2012 Jun; 13(8):901-15. PubMed ID: 22676195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memory-Efficient Assembly Using Flye.
    Freire B; Ladra S; Parama JR
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3564-3577. PubMed ID: 34469305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
    Wick RR; Judd LM; Gorrie CL; Holt KE
    PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Completing bacterial genome assemblies: strategy and performance comparisons.
    Liao YC; Lin SH; Lin HH
    Sci Rep; 2015 Mar; 5():8747. PubMed ID: 25735824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology.
    Mariano DC; Pereira FL; Aguiar EL; Oliveira LC; Benevides L; GuimarĂ£es LC; Folador EL; Sousa TJ; Ghosh P; Barh D; Figueiredo HC; Silva A; Ramos RT; Azevedo VA
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):456. PubMed ID: 28105921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies.
    Ye C; Hill CM; Wu S; Ruan J; Ma ZS
    Sci Rep; 2016 Aug; 6():31900. PubMed ID: 27573208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LightAssembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads.
    El-Metwally S; Zakaria M; Hamza T
    Bioinformatics; 2016 Nov; 32(21):3215-3223. PubMed ID: 27412092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study.
    Cerdeira LT; Carneiro AR; Ramos RT; de Almeida SS; D'Afonseca V; Schneider MP; Baumbach J; Tauch A; McCulloch JA; Azevedo VA; Silva A
    J Microbiol Methods; 2011 Aug; 86(2):218-23. PubMed ID: 21620904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the benefits of using mate-pairs to resolve repeats in de novo short-read prokaryotic assemblies.
    Wetzel J; Kingsford C; Pop M
    BMC Bioinformatics; 2011 Apr; 12():95. PubMed ID: 21486487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of nine popular de novo assemblers in microbial genome assembly.
    Forouzan E; Maleki MSM; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2017 Dec; 143():32-37. PubMed ID: 28939423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of bacterial genome assembly software for MinION data and their applicability to medical microbiology.
    Judge K; Hunt M; Reuter S; Tracey A; Quail MA; Parkhill J; Peacock SJ
    Microb Genom; 2016 Sep; 2(9):e000085. PubMed ID: 28348876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PVT: an efficient computational procedure to speed up next-generation sequence analysis.
    Maji RK; Sarkar A; Khatua S; Dasgupta S; Ghosh Z
    BMC Bioinformatics; 2014 Jun; 15():167. PubMed ID: 24894600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads.
    Al-Okaily AA
    BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.