BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24086559)

  • 1. Microfabricated polyacrylamide devices for the controlled culture of growing cells and developing organisms.
    Nghe P; Boulineau S; Gude S; Recouvreux P; van Zon JS; Tans SJ
    PLoS One; 2013; 8(9):e75537. PubMed ID: 24086559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple microfluidic devices for in vivo imaging of C. elegans, Drosophila and zebrafish.
    Mondal S; Ahlawat S; Koushika SP
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic platforms for generating dynamic environmental perturbations to study the responses of single yeast cells.
    Bisaria A; Hersen P; McClean MN
    Methods Mol Biol; 2014; 1205():111-29. PubMed ID: 25213242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies.
    Krajniak J; Lu H
    Lab Chip; 2010 Jul; 10(14):1862-8. PubMed ID: 20461264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabricated Devices for Confocal Microscopy on Biological Samples.
    Morgan NY
    Methods Mol Biol; 2021; 2304():93-109. PubMed ID: 34028712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic platform with spatiotemporally controlled micro-environment for studying long-term C. elegans developmental arrests.
    Zhuo W; Lu H; McGrath PT
    Lab Chip; 2017 May; 17(10):1826-1833. PubMed ID: 28466940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans.
    Lagoy RC; Albrecht DR
    Methods Mol Biol; 2015; 1327():159-79. PubMed ID: 26423974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria.
    Moolman MC; Huang Z; Krishnan ST; Kerssemakers JW; Dekker NH
    J Nanobiotechnology; 2013 Apr; 11():12. PubMed ID: 23575419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities.
    Moffitt JR; Lee JB; Cluzel P
    Lab Chip; 2012 Apr; 12(8):1487-94. PubMed ID: 22395180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing.
    Desta IT; Al-Sharif A; AlGharibeh N; Mustafa N; Orozaliev A; Giakoumidis N; Gunsalus KC; Song YA
    SLAS Technol; 2017 Aug; 22(4):431-436. PubMed ID: 27630097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Devices in Advanced Caenorhabditis elegans Research.
    Muthaiyan Shanmugam M; Subhra Santra T
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27490525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrotaxis of Caenorhabditis elegans in a microfluidic environment.
    Rezai P; Siddiqui A; Selvaganapathy PR; Gupta BP
    Lab Chip; 2010 Jan; 10(2):220-6. PubMed ID: 20066250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using confined bacteria as building blocks to generate fluid flow.
    Gao Z; Li H; Chen X; Zhang HP
    Lab Chip; 2015 Dec; 15(24):4555-62. PubMed ID: 26496967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans.
    Lagoy RC; Larsen E; Lawler D; White H; Albrecht DR
    Methods Mol Biol; 2022; 2468():293-318. PubMed ID: 35320572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic chemostat for experiments with bacterial and yeast cells.
    Groisman A; Lobo C; Cho H; Campbell JK; Dufour YS; Stevens AM; Levchenko A
    Nat Methods; 2005 Sep; 2(9):685-9. PubMed ID: 16118639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans.
    Cornaglia M; Lehnert T; Gijs MAM
    Lab Chip; 2017 Nov; 17(22):3736-3759. PubMed ID: 28840220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfabricated devices for biomolecule encapsulation.
    Desmarais SM; Haagsman HP; Barron AE
    Electrophoresis; 2012 Sep; 33(17):2639-49. PubMed ID: 22965707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart interface materials integrated with microfluidics for on-demand local capture and release of cells.
    Gurkan UA; Tasoglu S; Akkaynak D; Avci O; Unluisler S; Canikyan S; Maccallum N; Demirci U
    Adv Healthc Mater; 2012 Sep; 1(5):661-8. PubMed ID: 23184803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SU-8 force sensing pillar arrays for biological measurements.
    Doll JC; Harjee N; Klejwa N; Kwon R; Coulthard SM; Petzold B; Goodman MB; Pruitt BL
    Lab Chip; 2009 May; 9(10):1449-54. PubMed ID: 19417913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple culture system for long-term imaging of individual C. elegans.
    Pittman WE; Sinha DB; Zhang WB; Kinser HE; Pincus Z
    Lab Chip; 2017 Nov; 17(22):3909-3920. PubMed ID: 29063084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.