These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24086605)

  • 21. Evaluation of a New Algorithm to Optimize Audibility in Cochlear Implant Recipients.
    Holden LK; Firszt JB; Reeder RM; Dwyer NY; Stein AL; Litvak LM
    Ear Hear; 2019; 40(4):990-1000. PubMed ID: 30418283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A speech enhancement method for cochlear implant listeners.
    Yuan M; Sun Y; Feng H; Lee T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2036-9. PubMed ID: 24110118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System.
    Spriet A; Van Deun L; Eftaxiadis K; Laneau J; Moonen M; van Dijk B; van Wieringen A; Wouters J
    Ear Hear; 2007 Feb; 28(1):62-72. PubMed ID: 17204899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implantable Devices for Single-Sided Deafness and Conductive or Mixed Hearing Loss: A Health Technology Assessment.
    Ontario Health (Quality)
    Ont Health Technol Assess Ser; 2020; 20(1):1-165. PubMed ID: 32194878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A beamformer post-filter for cochlear implant noise reduction.
    Hersbach AA; Grayden DB; Fallon JB; McDermott HJ
    J Acoust Soc Am; 2013 Apr; 133(4):2412-20. PubMed ID: 23556606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of Individual Cochlear Implant Recipient Speech Perception With the Output Signal to Noise Ratio Metric.
    Watkins GD; Swanson BA; Suaning GJ
    Ear Hear; 2020; 41(5):1270-1281. PubMed ID: 32053546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients.
    Lai YH; Tsao Y; Lu X; Chen F; Su YT; Chen KC; Chen YH; Chen LC; Po-Hung Li L; Lee CH
    Ear Hear; 2018; 39(4):795-809. PubMed ID: 29360687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Personalizing Transient Noise Reduction Algorithm Settings for Cochlear Implant Users.
    Stronks HC; Tops AL; Hehrmann P; Briaire JJ; Frijns JHM
    Ear Hear; 2021 Nov-Dec 01; 42(6):1602-1614. PubMed ID: 33974780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Evaluation of Output Signal to Noise Ratio as a Predictor of Cochlear Implant Speech Intelligibility.
    Watkins GD; Swanson BA; Suaning GJ
    Ear Hear; 2018; 39(5):958-968. PubMed ID: 29474218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinical Outcomes of the Cochlear™ Nucleus(®) 5 Cochlear Implant System and SmartSound™ 2 Signal Processing.
    Runge CL; Henion K; Tarima S; Beiter A; Zwolan TA
    J Am Acad Audiol; 2016 Jun; 27(6):425-440. PubMed ID: 27310402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of noise reduction methods for sentence recognition by Mandarin-speaking cochlear implant listeners.
    Chen F; Hu Y; Yuan M
    Ear Hear; 2015 Jan; 36(1):61-71. PubMed ID: 25127321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Perceived sound quality of different signal processing algorithms by cochlear implant listeners in real-world acoustic environments.
    Chung K
    J Commun Disord; 2020; 83():105973. PubMed ID: 31901876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speech Recognition as a Function of Age and Listening Experience in Adult Cochlear Implant Users.
    Murr AT; Canfarotta MW; O'Connell BP; Buss E; King ER; Bucker AL; Dillon SA; Rooth MA; Dedmon MM; Brown KD; Dillon MT
    Laryngoscope; 2021 Sep; 131(9):2106-2111. PubMed ID: 34043247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing Binaural Pre-processing Strategies II: Speech Intelligibility of Bilateral Cochlear Implant Users.
    Baumgärtel RM; Hu H; Krawczyk-Becker M; Marquardt D; Herzke T; Coleman G; Adiloğlu K; Bomke K; Plotz K; Gerkmann T; Doclo S; Kollmeier B; Hohmann V; Dietz M
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advanced beamformers for cochlear implant users: acute measurement of speech perception in challenging listening conditions.
    Buechner A; Dyballa KH; Hehrmann P; Fredelake S; Lenarz T
    PLoS One; 2014; 9(4):e95542. PubMed ID: 24755864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The design and validation of a hybrid digital-signal-processing plug-in for traditional cochlear implant speech processors.
    Hajiaghababa F; Marateb HR; Kermani S
    Comput Methods Programs Biomed; 2018 Jun; 159():103-109. PubMed ID: 29650304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Benefit of the UltraZoom beamforming technology in noise in cochlear implant users.
    Mosnier I; Mathias N; Flament J; Amar D; Liagre-Callies A; Borel S; Ambert-Dahan E; Sterkers O; Bernardeschi D
    Eur Arch Otorhinolaryngol; 2017 Sep; 274(9):3335-3342. PubMed ID: 28664331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of a sigmoidal-shaped function for noise attenuation in cochlear implants.
    Hu Y; Loizou PC; Li N; Kasturi K
    J Acoust Soc Am; 2007 Oct; 122(4):EL128-34. PubMed ID: 17902741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.